Obtenção de novos compósitos obtidos a partir de argila e cinza de casca de arroz

Ricardo M. Silva¹ (IC)*, Luiz G. Konrath Júnior¹ (IC), Matheus Z. Krolow¹ (PG), Neftalí L. V. Carreño¹ (PQ), Margarete R. F. Gonçalves¹ (PQ), Sergio Cava¹ (PQ).

ricardomarques@globomail.com

¹Universidade Federal de Pelotas – UFPEL, Curso de Engenharia de Materiais, Laboratório de Materiais e Catálise, Rua Gomes Carneiro, 1 - Centro – CEP 96010-610 - Pelotas, RS Caixa Postal 354 - CEP 96001-970 - Pelotas, RS, Telefone: (53) 3275-7554 Fax: (53) 3275-7554. Palavras Chave: compósito, cerâmica, cinza.

Introdução

O lixo urbano e rural é um dos maiores resíduos poluentes. Se este fosse tratado corretamente reduziria os impactos que causam na natureza.

Pensando em métodos de reciclagem do lixo, neste trabalho buscou-se uma alternativa para o descarte da cinza da casca de arroz, a qual para os engenhos é vista como lixo, porém para nós é matéria-prima que pode ser agregada a materiais cerâmicos e assumir um papel significativo na produção de tijolos.

Resultados e Discussão

Neste estudo foram desenvolvidos três diferentes tipos de compósitos compostos por argila e cinzas de casca de arroz, obtidos através de uma mistura contendo 90% de argila e 10% de cinzas, sob agitação manual por 5 min e umidificação com água, até apresentação de boa trabalhabilidade. As argilas utilizadas possuíam composição química granulometria diferentes, ambas usadas na produção de tijolos de uma olaria da região de Pelotas/RS. Os compósitos foram obtidos após etapa de calcinação, a 600 ℃, por 2h. Na Figura 1 são mostradas imagens de microscopia eletrônica de varredura (MEV SSX-550, da Shimadzu) dos compósitos obtidos. A Tabela 1 apresenta os resultados de porosidade e área superficial da cinza de casca de arroz utilizada e a Tabela 2 apresentam os resultados do ensaio de compressão (EMIC DL200) dos compósitos A e B, sintetizados com argilas provenientes de localidades diferentes.

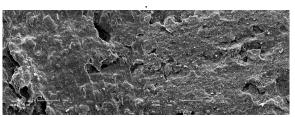


Figura 1. Compósito de cerâmica e cinza de arroz.

Tabela 1 – Área superficial e porosidade.

Cinza 600 ℃	Área superficial (m²/g)	Poros	
		Volume (cm³/g)	Diâmetro (Å)
	152,7	0,24	62,4

Tabela 2 – Ensaio de compressão dos compósitos

Compósito	Tensão (MPA)	M. Elast. (MPA)	Deformação (nm)
Α	8.752	635.1	13,78
В	4.924	378.7	13,00

Conclusões

- 1. Foi obtido um novo compósito que resiste a uma força de tensão maior do que 40 kg/cm², mínimo necessário para aplicação de materiais cerâmicos na construção civil, de acordo com a legislação.
- 2. Obteve-se, também, economia de 10% sobre o material cerâmico usado na produção de tijolos, além da valorização de um resíduo poluente.
- **3.** O tijolo produzido com cinza se torna mais leve que o tijolo tradicional.
- **4.** Foi também observado o consumo de 5% a mais de água para atingir a trabalhabilidade da massa cerâmica do compósito.

Agradecimentos

Os autores agradecem o apoio do CNPq, da FAPERGS e do FINEP.

William D. Callister Jr, Engenharia e Ciência dos Materiais, v.7, 2009, LVC

Lawrence H. Van Vlack, Princípios de Ciência e Tecnologia dos Materiais, CAMPUS

E. M. Cabral, R. J. de Sá, R. K. Vieira, R. P. Vasconcelos. *Utilização de massas cerâmicas na produção de agregado sintético de argila calcinada para uso em concreto - Laboratório de Ensaios de Materiais - LEM, Universidade Federal do Amazonas - UFAM*