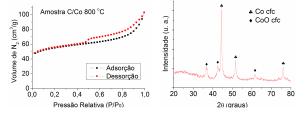
Síntese e caracterização de nanocompósitos para aplicação no encapsulamento de hidrogênio.

Matheus Z. Krolow*1 (PG), Cristiane W. Raubach1 (PG), Marcius A. Ullmann1 (IC), Neftalí L. V. Carreño^{1,2} (PQ), Sérgio S. Cava² (PQ), Marcelo O. Orlandi³ (PQ).

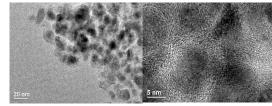
¹ Instituto de Química e Geociências – UFPEL. ² Faculdade de Engenharia de Materiais – UFPEL. ³ Instituto de Química – UNESP Araraguara

Palavras Chave: Hidrogênio, nanocompósitos, adsorção, sólidos porosos.


Introdução

O hidrogênio tem surgido como um promissor combustível limpo para os próximos anos^{1,2,3}. Porém, ainda não há tecnologia segura e economicamente viável para seu armazenamento, já que os métodos convencionais não se mostram os mais adequados^{1,2,3}. Uma das possibilidades de solução para este problema é a adsorção física e/ou química de hidrogênio em sólidos porosos^{2,3}.

Nessa perspectiva, o objetivo deste trabalho é a síntese e caracterização de compósitos porosos com potencial capacidade para armazenamento de hidrogênio.


Resultados e Discussão

As amostras de compósitos Ni/C e Co/C, sintetizadas a partir do método dos precursores poliméricos, foram avaliadas através de medida da área superficial específica pelo método de BET, conforme Figura 1 (a), na qual observa-se isoterma característica de sólidos com diâmetro de poros variado, porém classificados como macroporos. Na distribuição de poros pelo método BJH observou-se a variação dos diâmetros até aproximadamente 200 Å. Também foi avaliada a cristalinidade dos compósitos, a qual pode ser comprovada pela difração de raios X, Figura 1 (b).

Figura 1. (a) Isoterma de BET e (b) DRX, ambos do compósito C/Co calcinado a 800 $^{\circ}$ C, sob N₂.

A morfologia e o arranjo cristalino podem ser avaliados através das imagens obtidas por microscopia eletrônica de transmissão (TEM), Figura 2, nas quais nota-se o arranjo cristalino regular da porção metálica do compósito, bem como as áreas formadas por carbono amorfo, responsáveis pela porosidade do material.

Figura 2. Imagem de TEM, em diferentes aproximações, do compósito C/Co calcinado a 600 $^{\circ}$ C, sob N_2 .

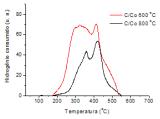


Figura 3. Perfil de TPR para as amostras de Co.

As análises preliminares de redução termoprogramada (TPR), Fig. 3, sugerem que a amostra calcinada a 600 $^{\circ}$ C apresenta melhor capacidade de consumo de H_2 do que a calcinada em temperaturas mais elevadas. Isso possivelmente é devido à maior concentração de sítios ativos na superfície, os quais apresentaram largo pico de redução em aproximadamente 300 $^{\circ}$ C, sendo o pico em 430 $^{\circ}$ C atribuído ao sítios mais internos. Com o aumento da temperatura de sinterização os sítios superficiais ficam menos disponíveis.

Conclusões

Os materiais sintetizados apresentaram características adequadas para adsorção de hidrogênio, como mostrado como a TPR. Para avaliar a capacidade de adsorção, estão sendo realizadas medidas de titulação de hidrogênio para construção das curvas de adsorção.

Agradecimentos

Os autores agradecem ao CNPq e à CAPES pelo suporte financeiro.

^{*} mkrolow.iqg@ufpel.edu.br

¹ Balat, M. Int. J. Hydrogen. Energ. 2008, 33, 4013.

² Li, J.; Wu, E. J. Supercrit. Fluid. **2009**, 49, 196.

³ Yürüm, Y.; Taralp, A.; Veziroglu, T. N. Int. J. Hydrogen. Energ. 2009, 34, 3784.