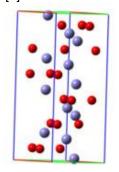
# Modelagem Computacional da Redução de NOx em Catalisador de Fe<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub>

\*Vanessa Castro de Souza<sup>1</sup> (IC), Polena do Nascimento Peixoto<sup>1</sup> (IC), Sidney Ramos de Santana<sup>1</sup> (PQ), Regiane de C. M. U. de Araújo<sup>1</sup> (PQ)

<sup>1</sup>Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa-PB.

Palavras Chave: PM6, Catálise Heterogenia, Fe2O3, ZrO<sub>2</sub>.


### Introdução

O  $NO_x$  é uma mistura gasosa contendo 95% de NO e 5% de  $NO_2$ , liberada pela combustão nos automóveis, que reage na atmosfera, sendo um dos precursores da chuva ácida, da formação de neblinas, do aquecimento global e do enfraquecimento da camada de ozônio.

Temos como objetivo o estudo de um material cerâmico, baseado num óxido metálico, utilizado em um dispositivo chamado conversor catalítico que é acoplado no cano de escape dos automóveis. Esse conversor tem como função reduzir o  $NO_x$  para  $N_2$  visando solucionar problemas ambientais. Essa reação é realizada por meio de catálise heterogênea, onde teremos a representação de um sólido e um gás, utilizando cálculos teóricos.

#### Resultados e Discussão

Os modelos em estudo foram criados baseando-se em superfícies geradas a partir da estrutura cristalográfica do  $Fe_2O_3$  e do  $ZrO_2$  obtidas no banco de dados de estruturas inorgânicas ICSD[2].



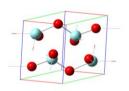



Figura 1: Célula unitária (a) da estrutura do ICSD No 88148 do Fe<sub>2</sub>O<sub>3</sub> e (b) No 157617 do ZrO<sub>2</sub>.

Iniciamos o mecanismos proposto para reação de redução do NOx para  $N_2$  como mostrado no artigo de Jug e colaboradores[5] que emprega o agregado  $V_2O_7H_4Ti_{33}O_{66}(H_2O)_{17}$  segundo a reação abaixo:

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$ 

Foram realizados cálculos de otimização das geometrias para a reação de adsorção do  $NH_3$  sobre a superfície  $Fe_2O_3$  no plano (001) e  $ZrO_2$  no plano (100).

Na Tabela 1, vemos os valores de energia de adsorção do  $NH_3$  para os sistemas estudados em comparação com o agregado  $V_2O_7H_4Ti_{33}O_{66}(H_2O)_{17}$ .

| Estruturas                                                                                                     | Energias de adsorção |
|----------------------------------------------------------------------------------------------------------------|----------------------|
| Fe <sub>2</sub> O <sub>3</sub>                                                                                 | - 121 KJ/mol         |
| ZrO <sub>2</sub>                                                                                               | -217,2 KJ/mol        |
| V <sub>2</sub> O <sub>7</sub> H <sub>4</sub> Ti <sub>33</sub> O <sub>66</sub> (H <sub>2</sub> O) <sub>17</sub> | -128,65 KJ/mol       |

**Tabela 1.** Comparação entre a energia de adsorção do NH<sub>3</sub> na superfície 3x3x1 Fe2O3, 1x4x3 ZrO<sub>2</sub> e no agregado V<sub>2</sub>O<sub>7</sub>H<sub>4</sub>Ti<sub>33</sub>O<sub>66</sub>(H<sub>2</sub>O)<sub>17</sub>

Podemos observar que o nosso resultado para superfície  $Fe_2O_3$  é consistente por ser muito próximo do resultado da literatura científica, além de possuir a mesma ordem de grandeza. Para a superfície  $ZrO_2$  temos um resultado menor de energia de adsorção, que nos mostra que a superfície é mais estável do que a do modelo proposto por Jug e colaboradores[5], assim, esta superfície apresenta-se como um bom candidato para o estudo da reação.

## Conclusões

A superfície de  $Fe_2O_3$  estudada apresenta resultados comparáveis com outros modelos da literatura para a adsorção de  $NH_3$ . Já a superfície  $ZrO_2$  fornece uma energia menor, mostrando-se mais estável e com isso é considerada um bom candidato para o estudo da reação proposta.

Isto nos indica que as superfícies são favoráveis para prosseguirmos com as próximas etapas da reação de redução de NOx com  $N_2$ .

#### Agradecimentos

CNPQ, CAPES, FAPESQ/PB, UFPB

<sup>\*</sup>lelessa Castro @hotmail.com

<sup>&</sup>lt;sup>1</sup>http://www.epa.gov/acidrain/what/index.html (acessado em 10/05/09)

http://icsdweb.fiz\_karlsruche.de. (acessado em

<sup>&</sup>lt;sup>3</sup>Stewart, J. J. P., J. Mol. Model. 14 (2008) 499-535.

<sup>&</sup>lt;sup>4</sup> http://www.openmopac.net (acesso em 10/05/09)

<sup>&</sup>lt;sup>5</sup>K. Jug, T. Homann, and T. Bredow, J. Phys. Chem. A 108 (2004) 2966-2971.

<sup>&</sup>lt;sup>6</sup> Orita et al., Appl Cat.A: General 258 (2004) 115-120.