Análise de tamanho de cristalito do medicamento (Ácido Mefenâmico) em amostras comerciais

Susilaine M. Savassa (IC)^{1*}, Selma G. Antonio (PG)¹, Simone T. Bonemer Salvi (PG)¹, Tiago A.Catelani (IC)¹, Manoel Guerreiro (IC)¹, Flavio M. de Sousa Carvalho (PQ)², Carlos de O. Paiva Santos (PQ)¹

* susisavassa@gmail.com

¹UNESP - Instituto de Química – Rua Francisco Degni, s/n, Quitandinha, CEP 14800-900, Araraquara – SP ²USP- Instituto de geociências – Rua do Lago, 562, Butantã, 05508-080, SãoPaulo- SP

Palavras Chave: ácido mefenâmico, tamanho de cristalito, DRX, Método de Rietveld.

Introdução

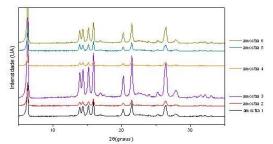
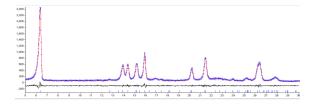

Fármacos podem cristalizar de diversas formas (polimorfos). O ácido mefenâmico (AM) é um antiinflamatório e antipirético não esteroidal e apresenta dois polimorfos I e II. Uma vez que tamanho e a forma dos cristais têm um forte efeito sobre as taxas de dissolução e biodisponibilidade, esses e outros fatores podem afetar a eficácia do medicamento¹. Neste trabalho foi determinado, em seis amostras comerciais, o polimorfo I do Ácido Mefenâmico e realizado um estudo sobre o tamanho de cristalito.

Figura 1. Estrutura dos polimorfos do ácido mefenâmico (a)forma I (b) forma II


Resultados e Discussão

Os difratogramas foram obtidos no difratômetro Rigaku RINT2000 anodo rotatório de cobre, fendas Soller de 2,5° de divergência, fenda de recepção de 0,3mm. Os refinamentos pelo método de Rietveld² foram realizados com o programa TOPAS Academic v. 4.1³. Foram realizadas medidas com seis comprimidos (Fig. 2) de laboratórios diferentes, dentre eles está o medicamento tido como referência, além de genéricos e similares.

A figura 3 apresenta o gráfico de Rietveld para amostra 2, caracterizada como o polimorfo I. O mesmo polimorfo foi encontrado nas demais amostras usando o método de Rietveld.

Figura 2. Difratogramas de Raios X das amostras de ácido mefenâmico.

Figura 3. Gráfico de Rietveld da uma amostra 2 de ácido mefenâmico.

Também foi possível, pelo método de Rietveld a análise de tamanho de cristalito para estas amostras de Ácido Mefenâmico, a Tabela 1 mostra os resultados obtidos.

Tabela 1. Tamanho de cristalito nos planos (h00), (0k0) e (00l) para as diferentes amostras.

	1	2	3	4	5	6
h 0 0	65,63	73,16	62,69	76,58	82,92	67,54
0 k 0	30,51	44,26	28,07	43,28	50,63	32,79
001	32,70	34,29	27,95	34,29	41,68	39,41

A amostra 5 apresenta os maiores cristalitos, e a amostra 3 apresenta cristalitos com maior anisotropia, com forma acicular.

Conclusões

As seis amostras comerciais, do Ácido Mefenâmico, foram caracterizadas por difração de raios X usando o Método de Rietveld, o que comprovou ser o polimorfo I. O método de Rietveld permitiu calcular a forma aparente do princípio ativo presente em cada comprimido.

Agradecimentos

Fapesp, CNPq, PIBIC-CNPq, Capes. À José Geraldo Catarino (IF-USP/SC/SP) pela assessoria na manutenção do equipamento e coleta de dados.

Cesur,S.; Gokbel,S.,Cryst. Res. Technol. .43,N° 7. 2008, 720-728. Rietveld, H.M. Journal of Applied Crystallography, 1969,2,65-71

³Coelho, A, Topas Academic v 4.1. **2007**

⁴McConnell, J.F.; F.Z.Company, v. 5 **1976**., p. 861-864