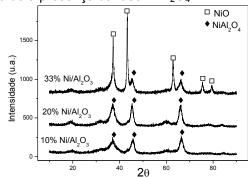
Preparo e caracterização de catalisadores Ni/Al₂O₃ para decomposição do etanol.

Daniela Zambelli Mezalira^{1*} (PG), Luiz Fernando Dias Probst¹ (PQ), Catherine Batiot-Dupeyrat² (PQ), Joël Barrault² (PQ). *dmezalira@yahoo.com.br

- 1 Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC, Brasil.
- 2 Laboratoire de Catalyse en Chimie Organique, ESIP UMR CNRS 6503, 86022 Poitiers Cedex, France.

Palavras Chave: Decomposição do etanol, catalisadores de níquel, produção de hidrogênio, nanotubos de carbono.


Introdução

Os nanotubos de carbono (NTC), descoberto por Sumio lijima¹ em 1991, apresentam extraordinárias propriedades físicas e químicas. Eles podem ser produzidos por diferentes tecnologias, sendo o método de processos catalíticos de decomposição o que oferece rotas mais fáceis de serem controladas. A produção do hidrogênio é igualmente de grande interesse industrial, sendo esse considerado um combustível ideal para as células combustível. O H₂ é atualmente produzido principalmente pela reforma à vapor do gás natural. O álcool etílico, porém, apresenta-se como um reagente promissor para produção de H₂ por ser uma fonte renovável. Entretanto, o principal inconveniente associado com a produção de H₂ pela reforma à vapor do álcool etílico, é que o processo produz monóxido de carbono e este é oxidado à dióxido de carbono. Devido a isso, esse trabalho propõe uma investigação da decomposição do etanol, em duas diferentes temperaturas (500 e 700°C), usando catalisadores de níquel suportados.

Resultados e Discussão

Os catalisadores Ni/Al₂O_{3.} preparados pelo método de impregnação úmida, foram impregnados com 10, 20 e 33% do metal e calcinados à 700°C durante 5 horas. A figura 1 mostra os perfis de DRX onde são observados picos largos para as amostras com baixa quantidade de metal (10 e 20%) referentes ao NiAl₂O₄ e picos mais estreitos para a amostra com 33% referente a presença de cristalitos de NiO. Nos resultados de DRX é difícil identificar precisamente as linhas de difração de NiAl₂O₄ devido a sobreposição com a fase y-Al₂O₃ e algumas linhas da difração de NiO. Não obstante, encontramos na literatura a presença de NiAl₂O₄ quando a temperatura de calcinação excede à 500°C². Os resultados de DRX foram confirmados pelos perfis de H₂-RTP onde observamos um único pico entre 600 e 900°C pra os catalisadores com 10 e 20% de Ni referente ao aluminato de níquel. Para o catalisador com 33% de Ni três picos principais são claramente visíveis. Na mais baixa temperatura o pico corresponde à redução do NiO de fraca interação com a alumina, o segundo indica uma

interação mais forte entre NiO e Al_2O_3 e terceiro é atribuído à presença da fase $NiAl_2O_4$.

Figura 1. DRX do Ni/Al₂O₃ calcinado à 700°C com diferentes quantidade de níquel (10, 20 e 33%).

Os atividade resultados de catalítica na decomposição do etanol mostraram que conversão do álcool foi completa, sendo o catalisador com o teor de Ni mais elevado o que apresentou uma maior produção de H₂ (32%). Os principais produtos para a reação executada em 700°C foram H₂, CO e CH₄. Em 500°C as quantidades de CO e CH₄ são menores e a quantidade de carbono depositado é mais elevada. A caracterização (ATG e MEV) do carbono formado após as 4 horas da reação mostraram que fibras de carbono são produzidas nas reações à 500°C e nanotubos de carbono são produzidos nas reações à 700°C.

Conclusões

Os catalisadores Ni/Al_2O_3 estudados foram eficientes para a produção de H_2 e NTC, sendo esses últimos produzidos à 700° C. O teor de Ni impregnado no catalisador bem como a temperatura da reação influenciou na atividade catalítica. O catalisador com 33% de Ni na reação à 700° C foi o que apresentou melhor resultado.

Agradecimentos

CNPg, UFSC, Universidade de Poitiers e CNRS.

33ª Reunião Anual da Sociedade Brasileira de Química

¹ Iijima, S. *Nature*. **1991**, 354, 56-58.

² Xu, Z.; Li, Y.; Zhang, J; Chang, L.; Zhou, R. e Duan, Z. *Appl Catal. A:* gen. **2001**, 210, 45-53.

³ Chen, J.; Ma, Q.; Rufford, T.; Li, Y. e Zhu, Z. Appl Catal. A: gen. **2009**, 362, 1-7.