Uso de microondas/resina Amberlist 15 na síntese do Acrilato de 2,3-dihidroxipropila: um precursor para novos adutos de Baylis-Hillman

Suervy C. de Oliveira Sousa (PG), Natália Gomes de Andrade (IC), Claudio Gabriel Lima Junior (PG), Fábio Pedrosa Lins Silva (PG), Mário L. A. A. Vasconcellos* (PQ) *mlaav@quimica.ufpb.br

Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa, PB.

Palavras Chave: Glicerol, Microondas, monoacilglicerol (MAGs)

Introdução

O glicerol (1), um co-produto do Bio-Diesel, é uma das substâncias mais versáteis e valiosas conhecidas pelo homem. Com o aumento da produção de Bio-Diesel tem-se intensificado os incentivos para o uso do glicerol como fonte de novos produtos de maior valor agregado (gliceroquímica). Os glicerois monoesterificados (MAGs) são encontrados na literatura com diversos fins. Apresentamos aqui a síntese altamente eficiente do Acrilato de 2,3-dihidroxipropila (4), projetado para ser aceptor de Michael na síntese de novos adutos de Morita-Baylis-Hillman (AMBH) bioativos hidrossolúveis.

Resultados e Discussão

A síntese de 4 foi feita em três etapas (74 % global) como descrito no esquema 1. A etapa de formação de 4 a partir de 3 (clivagem de acetal) foi o maior desafio desta síntese. Como apresentado na Tabela 1, quinze metodologias foram avaliadas. A maioria das metodologias clássicas de clivagens de acetais mostrou ser ineficientes (Entradas 1-6). O uso da acida Montimorilonita KSF resina Montimorilonita K10 não foi tão eficiente quanto normalmente descrito.O uso de ACOH 10% (entrs.12/13) mostrou ser bem eficiente, somente na presença de BHT como agente antipolimerizante. Entretanto quando a reação foi acelerada em reator de microondas (MW) Discover®, usando a resina Amberlist 15, facilmente reciclável, obtivemos rendimento quantitativo em 15 min. de reação (entrada 15, tabela 1).

Esquema 1. i-Glicerol (10g), acetona (30mL), TSOH(0,3g), pentano (30mL), 60° C, Dean-Stark, 24h, 85%. ii- 6g de 2, TEA (11mL), cloreto de acriloila (8mL), CH₂Cl₂ (200mL), 0° C, 3h, 87%. iii-Metodologias mostradas na tabela 1.

Tabela 1. Condições experimentais na síntese de **4** a partir de **3**.

Entr.	CONDIÇÃO	Tempo	Rend (%)*
1	PPTS, CHCl ₃ , t.a	24h	0
2	PPTS, SiO ₂ , H ₂ O, MW	15min	0
3	TsOH, H ₂ O / tolueno, 80°C	24h	0
4	TsOH, CH₃OH, t.a	3h	34
5	CHCl ₃ , FeCl ₃ .SiO ₂ , t.a	6h	33
6	HCI (cat.), H ₂ O/tolueno, t.a.	23h	16
7	Montimorilonita KSF, H₂O/ CHCl₃, 60°C	3dias	0
8	Montimorilonita KSF, H ₂ O /acetone, 60°C	25h	19
9	Montimorilonita K10, H₂O/acetona, 60°C	24h	51
10	Montimorilonita K10, H ₂ O , MW	5min	60
11	Amberlita IRA-120, Etanol, 78°C	24h	0
12	Ácido acético 10% , 60°C	48h	10
13	Ácido acético 10%, 0.01equiv. BHT, 60°C	24h	90
14	Amberlist 15, CH ₃ OH, t.a	4h	97
15	Amberlist 15,MW CH ₃ OH, 60°C	15min	>99

Conclusões

Neste trabalho apresentamos uma rota sintética eficiente (74% global) para o Acrilato de 2,3-dihidroxi propila (4), onde o uso a resina Amberlist 15 (reciclável) com aceleração por MW na etapa de clivagem do acetal 3 foi feita em >99% em 15min. O uso de 4 na síntese de novos AMBH hidrossolúveis está agora em andamento no nosso laboratório.

Agradecimentos

CAPES, CNPq e UFPB

¹ Mota C. J. A.; da Silva, C. X. A.; Gonçalves, V. L. C. *Quim. Nova* **2009**, *32*, 639.

² Barbosa, T. P., Junior, C. G. L., Silva, F. P. L., Lopes, H. M., Figueiredo, L. R. F., Sousa, S. C. O., Batista, G. N., Silva, T. G., Silva, T. M. S., Oliveira, M. R., Vasconcellos, M. L. A. A. Eur. J. Med. Chem. 2009, 44, 1726