Caracterização morfologica e estrutural de revestimentos de Co-Mo tratados termicamente em diferentes temperaturas

Paulo Naftali da S. Casciano (PG), Renato A. C. Santana (PQ), Pedro de Lima-Neto (PQ), Adriana N. Correia (PQ)

Grupo de Eletroquímica e Corrosão, DQAFQ-UFC, Fortaleza-CE, Brasil e-mail: paulonaftali@hotmail.com

Palavras Chave: Eletrodeposição, CoMo, Difração de Raios-X.

Introdução

Eletrodepósitos de Co-Mo são amorfos apresentam propriedades eletrocatalíticas para produção de H₂ e O₂. Entretanto pouco tem se avaliado o feito do tratamento térmico nas propriedades deste de eletrodepósito. Assim, objetivou-se verificar a influência do tratamento morfologia e na na estrutura revestimentos de CoMo obtidos por eletrodeposição. A caracterização foi feita por Microscopia Eletrônica de Varredura (MEV), Energia Dispersiva de Raios-X (EDX) e Difração de Raios-x (DRX).

Resultados e Discussão

A composição da solução eletrolítica para a eletrodeposição de CoMo sobre substrato de cobre foi CoSO₄.7H₂O, Na₂MoO₄.2H₂O, C₆H₅Na₃O₇.2H₂O, C₁₂H₂₅NaO₄S e (NH₄)₂SO₄. Os parâmetros de eletrodeposição estão descritos na Tabela, com carga de eletrodeposição de 300 C.

Tabela: Valores de densidade de corrente e pH para eletrodeposição, bem como o percentual de Mo nos eletrodepósitos.

Eletrodepósito	(i / mA.cm ⁻²)	рН	% Mo
A	30	6	27±1
В	60	6	28±1
С	45	7	29±1
D	30	8	31±1
E	60	8	32±1

As análises da composição química exibiram pouca diferença na percentagem dos constituintes, como é observado na Tabela. As morfologias dos cinco eletrodepósitos antes e após cada tratamento térmico (200, 400 e 600 °C) foram semelhantes apresentando nódulos e trincas que chegam ao substrato, como pode ser observado nas imagens (a), (b), (c) e (f) da Figura 1. Respostas semelhantes também foram obtidas para análises por Difração de raios-X. Os eletrodepósitos sem tratamento térmico e com tratamentos térmicos em 200 e 400 °C apresentaram-se amorfos (Figura 2a). Apenas quando os eletrodepósitos foram submetidos ao tratamento térmico a 600°C apresentaram estruturas cristalinas (Figura 2b) referentes a MoO₄ (*), CoMoO₄ (·), CuO (+) e Co₂O₃ (0). Ao mesmo tempo em que se percebe alterações estruturais, percebese, em 600 °C, a ausência das trincas e também a diminuição da porcentagem de Mo na superfície para menos de 15 %.

33ª Reunião Anual da Sociedade Brasileira de Química

Para efeito comparativo e em função da semelhança obtida, as Figuras 1 e 2 apresentam os resultados apenas para eletrodepósito do tipo B.

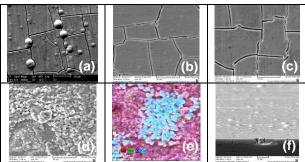
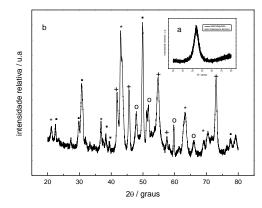



Figura 1: Imagens de MEV para o eletrodepósito tipo B. (a) sem tratamento térmico; (b) tratamento térmico a 200°C; (c) tratamento térmico a 400°C; (d) tratamento térmico a 600°C; (e) mapeamento em cores para o tratamento térmico a 600°C onde: Co (vermelho), Mo (verde), O (azul) Cu (Verde claro), (f) imagem transversal.

Figura 2: Difratograma de raios-X para (a) eletrodepósito sem tratamento térmico; (b) eletrodepósito com tratamento térmico a 600°C.

Conclusões

O tratamento térmico provoca mudanças na morfologia dos revestimentos. O tratamento a 600°C muda drasticamente a morfologia dos depósitos, a estrutura, promove a migração de cobre para a superfície e diminuindo a percentagem de Mo.

Agradecimentos

UFC, CNPq, CAPES, Funcap, FINEP.

Goméz, E.; Pellicer, E.; Vallés, E. Surface & Coatings Technology, v. 197, p. 238-246, 2005.