Cinética da remoção do p-nitrofenol por adsorção em turfa fibrosa

Silvia Jaerger (IC)^{1*}, Carlos A. P. Almeida (PQ)¹, Andreia N. Fernandes (PQ)²

Palavras Chave: p-nitrofenol, adsorção, turfa.

Introdução

O p-nitrofenol (PNF) é um poluente comumente encontrado em efluentes de pesticidas, produtos farmacêuticos, produtos petroquímicos e outras indústrias¹. Devido aos seus efeitos nocivos, efluentes contendo PNF precisam ser tratados antes de serem despejados em corpos receptores². Muitos métodos de tratamento têm desenvolvidos para remoção de diferentes contaminantes, sendo a adsorção um processo amplamente utilizado devido a fácil utilização e baixo custo¹⁻³. Diversos tipos de adsorventes têm sido empregados em estudos de adsorção. A turfa é um adsorvente alternativo ao carvão ativado, pois é um material de baixo custo, de alta porosidade, não exige ativação e é viável em muitos países como no Brasil³. Dentro deste contexto, o objetivo deste trabalho consistiu em avaliar a cinética de adsorção do PNF na turfa, visando uma melhor compreensão do seu mecanismo.

Resultados e Discussão

O trabalho foi realizado utilizando-se 9 frascos de vidro contendo 0,1 g de turfa fibrosa, 50 mL de solução de PNF cada um, em diferentes concentrações, temperatura de 25 °C e pH 8. O sistema foi mantido sob agitação mecânica à 500 rpm. Os dados foram ajustados de acordo com os modelos cinéticos de pseudo primeira e segundaordens¹⁻³ e os resultados estão nas tabelas 1 e 2. Para a cinética de pseudo primeira-ordem os valores dos coeficientes de correlação, R_{1,} foram inferiores 0.95 (tabela 1), e os valores de qe calculado não concordaram com os valores de qe1 experimentais (tabela 2). Entretanto, os coeficientes de correlação para o modelo cinético de pseudo segunda-ordem foram maiores que 0,99 para todas as concentrações estudadas (tabela 1) e os valores de de q_e calculado concordaram com os valores de experimentais (tabela 1). Assim, resultados sugerem que o mecanismo de pseudo segundaordem é predominante e que a adsorção depende das quantidades de PNF adsorvidas na superfície da turfa em um tempo qualquer³. A equação de pseudo-segunda-ordem está baseada capacidade de adsorção da fase sólida e, ao contrário de outros modelos, se ajusta melhor ao comportamento cinético em todo o processo de adsorção^{1,2}.

Tabela 1: Parâmetros cinéticos da adsorção

C ₀ (mg/L)	q _{e1} (mg/g)	10 ² k ₁ (g/mgh)	R ₁	q _{e2} (mg/g)	10 ² k ₂ (g/mgh)	R ₂
200	4,23	3,86	0,95	6,80	2,72	0,99
400	4,52	3,37	0,95	7,77	2,73	0,99
600	5,55	3,37	0,93	9,24	2,78	1,00
800	6,44	3,27	0,93	11,46	2,67	1,00
1000	8,99	3,48	0,92	15,45	2,58	1,00
1200	9,54	5,72	0,90	18,63	1,77	1,00
1300	17,84	5,12	0,99	20,76	1,78	1,00
1400	22,63	5,62	0,92	24,53	1,23	0,99
1500	27,6	5,07	0,95	25,97	1,71	1,00

Tabela 2: Valores de q_{e2} experimental e calculado

Tabela 2: Valores de des experimental e calculado					
C ₀ (mg/L)	q _e (mg/g) experimental	q _{e2} (mg/g) calculado			
200	6,7	6,80			
400	7,8	7,77			
600	9,1	9,24			
800	11,7	11,46			
1000	15,8	15,45			
1200	18	18,63			
1300	20	20,76			
1400	24	24,53			
1500	28	25,97			

 C_0 – Concentração inicial; q_e – quantidade adsorvida no equilíbrio; $k_1\ e\ k_2$ – constantes de velocidade; $R_1\ e\ R_2$ – Coeficientes de correlação.

Conclusões

A adsorção do PNF pela turfa seguiu uma cinética de pseudo segunda-ordem, mostrando que a adsorção depende das quantidades adsorvidas num tempo qualquer. A quantidade de PNF adsorvida experimental concordou com a quantidade adsorvida de PNF calculado pela equação de pseudo segunda ordem. A turfa adsorveu o PNF de forma satisfatória e pode ser usada como adsorvente alternativo nesse tipo de tratamento.

Agradecimentos

UNICENTRO e LINE

¹ Tang D., Zheng Z., Lin K., Luan J., Zhang J., Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. Journal of Hazardous Materials, 2006, p. 49-56

² Polat H., Molva M., Polat M., Capacity and Mechanism of phenol adsorption on lignite. *Internacional Journal of Mineral Processing*, 2006, p. 264-273

³ Fernandes A.N., Almeida C.A.P., Menezes C.T.B., Debacher N.A., Sierra M.M.D., Removal of methylene blue from aqueous solution by peat, *Journal of Hazardous Materials*, 2006, p. 412-419.

¹Departamento de Química, Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR.

²Centro de Ciências Exatas e Tecnologias, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS.