Síntese de aminoderivados do ácido 6α , 7β -di-hidroxivouacapan- 17β -óico.

Felipe P. G. Euzébio (PG)^{1*}, Ângelo de Fátima (PQ)¹, Antônio Flávio de C. Alcântara (PQ)¹, Dorila Piló-Veloso (PQ)¹, Dalton L. Ferreira-Alves (PQ)².

Palavras Chave: Pterodon Polygalaeflorus Benth, furanoditerpenos, vouacapanóides, reação de Mannich.

Introdução

Os frutos da *Pterodon polygalaeflorus* Benth têm sido usados popularmente no tratamento de infecções de garganta e reumatismo. A partir do extrato hexânico desses frutos, foi isolado o ácido $6\alpha,7\beta$ -di-hidroxivouacapan- 17β -óico (ADV, **1**), um furanoditerpeno que apresentou propriedade antiedematogênica em ensaios laboratoriais, bem como efeitos analgésico e sedativo, além de atividade reguladora do crescimento de plantas 1 .

Estudos recentes do nosso grupo de pesquisa mostraram que algumas lactonas derivadas do ADV, dentre elas a HVL (2, Fig. 1), apresentam atividade antiproliferativa contra células cancerígenas humanas². Isso motivou a síntese dos derivados 3 a 8 (Fig 1), visando estudos comparativos quanto às suas propriedades farmacológicas e quanto à relação estrutura-atividade. Essas novas substâncias foram obtidas via reação de Mannich com sais de imínio pré-formados.

Resultados e Discussão

Figura 1. Síntese de aminoderivados da HVL (2)

Reagindo o ADV (1) com anidrido acético e acetato de sódio em THF a 45 °C, durante 50 min, foi obtida a lactona HVL (2). Em uma segunda etapa, diferentes aminas geminais reagiram com cloreto de acetila em THF, sob atmosfera inerte, para formação dos respectivos sais de imínio. Em seguida, a HVL reagiu com esses sais para a obtenção dos respectivos aminoderivados (Fig. 1). A caracterização de 3 a 8 foi feita por RMN de ¹H e ¹³C. usando técnicas 1D e 2D. Comparativamente aos espectros da HVL, verificou-se a ausência do sinal de ¹H referente a hidrogênio 16 e a observação de sinais, tanto no espectro de RMN de ¹H quanto de ¹³C, referentes aos átomos do respectivo grupo substituinte introduzido em C-16 (1', 1", 2", 3" e 4" para o derivado correspondente, Fig. 1).

Tabela 1. Deslocamentos químicos e atribuições de RMN de ¹³C de **3** a **8** (100 MHz, CDCl₃)

	3	4	5	6	7	8
С	δ (ppm)					
1'	48,9	50,4	50,9	52,1	55,5	55,7
1"	47,0	56,0	63,0	-	-	-
2"	11,5	18,7	26, 5	53,8	54,0	67,0
3"	-	12,2	20, 8	23,4	25, 5	53,5
4"	-	-	-	-	23,9	-

Conclusões

A metodologia de síntese dessas substâncias (reação de Mannich com sal de imínio pré-formado) foi bastante adequada, apresentando bons rendimentos para a obtenção das substâncias 3 a 8. Esses rendimentos variaram de 55% para 8 a 84% para 7.

Agradecimentos

CNPg e FAPEMIG.

¹ Departamento de Química, ICEx; ² Departamento de Farmacologia, ICB; Universidade Federal de Minas Gerais. * jesus_purisco@yahoo.com.br

¹ Castelo-Branco, P. A. et al J. Chem. Res., **2006**, 6, 351.

² Euzebio, F. P. G. et al, Bioorg. Chem., **2009**, 37, 96.