Estudo das Metodologias Sintéticas e Avaliação Antioxidante de Tiouréias Derivadas da Fenetilamina

Roberta Franca Guimarães* (IC), Danilo Sousa Pereira (IC), Camilla Moretto dos Reis (PG), Andressa Esteves-Souza (PQ), Aurea Echevarria (PQ)

robertafranca@ufrrj.br

Departamento de Química, ICE, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ

Palavras Chave: Tiouréias, ultrassom, microondas, atividade antioxidante.

Introdução

As tiouréias constituem uma valiosa classe de compostos com ampla utilização na síntese de compostos heterocíclicos¹, podendo também atuar como agentes para captura de radicais livres resultantes do metabolismo celular². Por esta razão, nosso grupo de pesquisa tem estudado várias metodologias para o desenvolvimento de rotas mais eficientes para síntese dessa classe de compostos. Assim, esta comunicação tem como objetivo a síntese, utilizando três metodologias diferentes, e a avaliação da atividade antioxidante de tiouréias derivadas da fenetilamina.

Resultados e Discussão

Neste trabalho estudou-se três metodologias para a obtenção das tiouréias, utilizando a fenetilamina e *p*-X-isotiocianatos, conforme a **Figura 1**.

Figura 1: Metodologia sintética para a obtenção das tiouréias (**TIO**) *p*-substituídas.

Na metodologia usando-se agitação, a temperatura ambiente, obtiveram-se os produtos desejados com rendimentos satisfatórios após 50 minutos de reação. Além de tolueno o CHCl₃ foi usado como solvente, no entanto, a precipitação do produto foi menos eficiente. Realizou-se, também, a obtenção das tiouréias por irradiação de microondas, utilizando gel de sílica como suporte sólido. A reação ocorreu na potência 10 em um tempo de 30 segundos. Esta metodologia foi muito satisfatória apenas para a obtenção das tiouréias não substituída e metoxilada. Uma terceira metodologia foi testada, utilizando banho de ultrassom como fonte de energia. Neste método o tempo de reação foi reduzido para 20 minutos com bons rendimentos 33ª Reunião Anual da Sociedade Brasileira de Química

e facilidade de isolamento dos produtos, pois os mesmos precipitaram ao fim da reação. Sendo assim, a metodologia utilizando-se a irradiação de ultrassom foi escolhida como a mais eficiente para a síntese das tiouréias. Os pontos de fusão e rendimentos, em função do método, das tiouréias sintetizadas estão descritos na **Tabela 1**.

A avaliação da atividade antioxidante foi feita utilizando o método do DPPH³. Os ensaios foram realizados em placas com 96 poços, em diferentes concentrações da amostra (12,5-125,0μΜ), as absorbâncias foram medidas em leitora Elisa a 490nm. O %AA foi calculado a partir da equação: %AA=100-[(A_{amostra} - A_{branco})x100]/A_{controle} (branco: amostra sem DPPH; controle: DPPH sem amostra). Os resultados destes ensaios mostraram que o derivado nitro substituído foi o que apresentou maior potencial antioxidante, indicando relação da atividade com a natureza eletrônica dos grupos substituintes do anel aromático. Os valores de CE₅₀ das tiouréias ensaiadas estão descritos na **Tabela 1**.

Tabela 1. Pontos de fusão, rendimentos, nas diferentes metodologias, e CE₅₀ das tiouréias *para*-substituídas

Х	PF(ºC)	Rendimentos (%)/Tempo (min)			CE ₅₀ ^a ±dp ^b
		T.amb	Ultrassom	Microondas	(μM)
Н	98-102	84/50	96/20	92/0,5	58,76±0,11
OCH ₃	111-113	67/50	86/20	92/0,5	>100
NO ₂	142-144	93/50	93/20	n.o. ^c	47,56±0,22
CH₃	113-115	n.o. ^c	71/20	n.o. ^c	71,58±0,72

^aCE₅₀: concentração efetiva de 50% de captura do radical DPPH. ^bdesvio padrão. ^cnão obtido.

Conclusões

A metodologia sintética para a obtenção das tiouréias, utilizando banho de ultrassom, foi a que apresentou os melhores resultados. O teste com DPPH indicou maior atividade antioxidante para a tiouréia nitro-substituída.

Agradecimentos

UFRRJ, CNPq.

Ulrik B. et al. Tetrahedron Letters 2004, 45, 269.

² Bianchi, M.L.P. et al. Rev. Nutr. **1999**, 12, 124.

³ Mensor, L.L. et al. Phytoth. Res. 2001, 15, 127.