Síntese template de plataformas macroporosas e estudo da influência do tamanho do poro no desempenho dos mediadores.

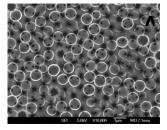
Alann de Oliveira P. Bragatto* (IC), Vinicius R. Gonçales (PG), Tânia M. Benedetti (PG), Roberto M. Torresi (PQ) e Susana I. Córdoba de Torresi (PQ)

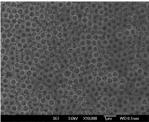
E-mail: alannbragatto@usp.br

Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo (SP), Brasil

Palavras Chave: Azul da Prússia, polipirrol, híbrido, peróxido de hidrogênio, síntese template, macroporos

Introdução


Um dos mediadores utilizados em biossensores amperométricos mais estudados é o Azul da Prússia, apresentando grande eficiência na transdução do sinal químico e oferecendo a vantagem de se poder trabalhar a baixos potenciais, o que reduz o problema de interferentes. No entanto, alguns cátions como o Na[†] bloqueiam a sua atividade, o que se torna um problema para a aplicação em amostras biológicas. [1]


Uma das alternativas para suprir esse problema consiste na síntese de um análogo, o híbrido CuHCNFe/Ppy. Com a finalidade de melhorar a imobilização das enzimas e tornar a transdução do sinal químico mais eficiente, foi desenvolvido o mediador híbrido nanoestruturado através da síntese assistida por moldes de esferas de poliestireno^[2]. Portanto, o trabalho tem como desenvolver filmes do obietivo híbrido CuHCNFe/Ppy com diferentes tamanhos de poros (300, 460, 600 e 800nm) e investigar como variam as propriedades e características deste eletrodo modificado, tais como sensibilidade frente à detecção de H₂O₂ e molhabilidade do mediador.

Resultados e Discussão

As nanoestruturas são formadas utilizando-se como moldes partículas esféricas coloidais de poliestireno, cujo tamanho determina o diâmetro do poro no filme sintetizado. A síntese do híbrido CuHCNFe/Ppy é feita em duas etapas eletroquímicas por meio de voltametrias cíclicas^[2]. A figura 1 mostra os filmes sintetizados com poros de 800 e 460nm.

Os valores que caracterizam as propriedades e características dos filmes, tais como sensibilidade, limite de detecção e tempo de resposta, foram determinados por cronoamperometria por adições sucessivas de alíquotas de H_2O_2 em solução eletrolítica NaCl 0,1M + HCl 0,1M. Os valores de sensibilidade obtidos são mostrados em função do tamanho do poro na tabela 1.

Figura 1. Filme de CuHCNFe/Ppy com poros de 800 e 460nm.

Tamanho do poro/	Sensibilidade /
nm	μA.cm ⁻² .mmol ⁻¹ .L
massivo	192,2
460	153,0
600	169,3
800	147,3

Tabela 1. Sensibilidade dos filmes em função do tamanho do poro.

sensibilidade dos filmes Os valores de nanoestruturados são próximos. Um fator que pode contribuir para explicar a sensibilidade parecida dos filmes é a presença de ar dentro dos poros, o que dificulta a molhabilidade dos filmes. [3] Medidas do ângulo de contato utilizando a mesma solução da cronoamperometria eletrolítica para comportamento hidrofóbico filmes os nanoestruturados (109°, 110° e 100° para os filmes de 800, 600 e 460nm) e hidrofílico para o massivo, 66°. Esses valores mostram que a presença de ar pode ser determinante na sensibilidade dos filmes. Portanto, é de interesse estudar a melhoria que uma cela a vácuo poderia trazer para o sistema; além disso, também é de interesse futuro determinar a quantidade de material depositada no filme, para que a sensibilidade seja normalizada pela massa de material depositado.

Agradecimentos

FAPESP, CNPg e INCT Bioanalítica

33ª Reunião Anual da Sociedade Brasileira de Química

-

¹ Ricci, Fe Palleschi, G. Biosens. Bioelectron . 2005, 21, 389.

² Gonçales, V.R.; Salvador, R.P.; Alcântara, M.R. e Córdoba de Torresi, S.I. *J. Electrochem. Soc.* **2008**, *155(9)*, K140.

³ Marmur, A. Soft Matter, 2006, 2, 12.