Óleos Atividade Inseticida de Fenilpropanóides Isolados dos Essenciais de Croton zehntneri

Adriano Sousa Rodrigues¹ (IC), Denise R. Nepomuceno (PG)³, Thalles B. Grangeiro (PQ)³, Telma L. G. Lemos² (PQ), Paulo N. Bandeira¹ (PQ), Hélcio S. Santos¹ (PQ)^{*}. helciodossantos@gmail.com

50 μL

Anetol

10 μL

30 µL

50 µL

Palavras Chave: Croton zehntneri, atividade inseticida, Callosobruchus maculatus

Introdução

Croton zehntneri (Euphorbiaceae) é uma planta aromática nativa do Nordeste do Brasil conhecida popularmente como "canela-de-cunhã" e utilizada na medicina popular para aliviar distúrbios intestinais¹. Nos últimos anos, óleos essenciais têm apresentado potencial inseticida contra diferentes pragas agrícolas².

Resultados e Discussão

Nos óleos essenciais das folhas de três quimiotipos de C. zehntneri foram identificados 14 compostos, sendo os constituintes principais os fenilpropanóides E-anetol, estragol e eugenol (Tabela 1). Os parâmetros da biologia do inseto foram analisados em função da resposta as doses destes óleos: número total de ovos postos por fêmea (NO/F), percentual de ovos eclodidos (OE), percentual de emergência de adultos (**EA**), peso médio dos insetos recém-emergidos (TMD) e tempo médio de desenvolvimento (PM). Os resultados obtidos indicam que os constituintes majoritários isolados dos óleos essenciais dos três quimiotipos de C. zehntneri apresentaram significativa inseticida contra C. macullatus, principalmente nas concentrações de 30 e 50 µL (Tabela 2).

Tabela 1. Composição química dos óleos essenciais de C. zehntneri

Constituintes		Folhas - Quimiotipos		
	I.R.	1	2	3
β - pineno	979	2,3		0,7
1,8 - cineol	1031	1,1		1,5
E - ocimeno	1050			0,7
α – terpineol	1189			0,3
Estragol	1196	3,7	90,3	
Z - anetol	1253	0,3		
E - anetol	1285	89,1		
Eugenol	1359			84,4
E - cariofileno	1419	0,5		1,2
Z - bergamoteno	1435			0,1
Z- Metilisoeugenol	1454		0,3	0,2
α - humuleno	1455			
Germacreno - D	1485	0,4		0,3
Biciclogermacreno	1500	1,4	1,7	4,2
δ - cadineno	1523			
Acetato de eugenol	1523			5,7
Total (%)		98,8	92,3	99,3

Tabela 2. Atividade contra o C. macullatus dos constituintes majoritários dos óleos essenciais de C. zehntneri

Zennunen			
Composto	NO/F		OE
Controle	162,33	162,33 ± 75,14a	
Eugenol			
10 μL	59,33 ± 10,21 ab		$0,00 \pm b$
30 µL	$22,66 \pm 8,50 \text{ b}$		$0,00 \pm b$
50 μL	$11,66 \pm 8,14 \text{ b}$		$0,00 \pm b$
Estragol			
10 μL	$80,00 \pm 92,97ab$		$72,00 \pm 85,16ab$
30 µL	$2,33 \pm 0,57$ b		$0,00 \pm b$
50 μL	$0.00 \pm 0.00b$		$0,00 \pm b$
Anetol			
10 μL	$17,66 \pm 7,02b$		$0,00 \pm b$
30 µL	$17,66 \pm 9,60b$		$0.00 \pm b$
50 μL	$8,\!66 \pm 6,\!43b$		$0.00 \pm b$
Composto	EA	TMD	PM
Controle	$94,00 \pm 5,29a$	$30,29 \pm 0,42a$	$4,34 \pm 0,06a$
Eugenol			
10 μL	$0.00 \pm b$	$0,00 \pm b$	$0.00 \pm b$
30 µL	$0.00 \pm b$	$0.00 \pm b$	$0.00 \pm b$
50 μL	$0.00 \pm b$	$0.00 \pm b$	$0.00 \pm b$
Estragol			
10 μL	$62,66 \pm 54,31a$	22,25 ± 19,31a	$2,72 \pm 2,38a$
30 μL	$0.00 \pm b$	$0.00 \pm b$	$0.00 \pm b$

 $0.00 \pm b$ sentido vertical Letras iguais representam valores que não significativamente (P = 0.01) pelo teste de Tukey. Cada valor representa a média e o desvio padrão entre as repetições.

 $0.00 \pm b$

 $0,00 \pm b$

 $0,00 \pm b$

 $0.00 \pm b$

 $0.00 \pm b$

0.00 + b

 $0,00 \pm b$

 $0.00 \pm b$

 $0.00 \pm b$

 $0.00 \pm b$

 $0,00 \pm b$

Conclusões

Os fenilpropanóides isolados dos óleos essenciais dos três quimiotipos de C. zehntneri, se mostraram ativos contra o C. macullatus.

Agradecimentos

A FUNCAP e CNPq, pelo apoio financeiro e a UFC pela obtenção dos dados espectrométricos.

¹Universidade Estadual Vale do Acaraú, UVA, Sobral, Ceará, ²Departamento de Química Orgânica e Inorgânica, UFC, Fortaleza, Ceará, ³Departamento de Biologia, UFC.

¹ Oliveira, A. C.; Leal-Cardoso, J. H.; Santos, C. F.; Morais, S. M.; Coelho-de-Souza, A. N. Braz. J. Med. Biol. Res. 2001, 34, 1471. ² Ketoh, G. K.; Koumaglo, H. K.; Glitho, I. A. J. Stored Prod. Res. **2005**, 41, 363.