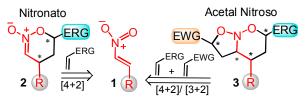
Cicloadições [4+2]/[3+2] diastereosseletivas não racêmicas entre alcenos substituídos e nitroolefinas quirais oriundas de α-L-aminoácidos


Leandro Lara de Carvalho* (PG) e Vera Lúcia Patrocinio Pereira (PQ)

Núcleo de Pesquisas de Produtos Naturais (NPPN) /UFRJ, Cidade Universitária, Prédio do CCS, Subsolo H031 (LaSESB), CEP 21941-590, Rio de Janeiro. *leandrolara10@yahoo.com.br.

Palavras-chave: Hetero-Diels-Alder, Cicloadições 1,3-dipolares, Acetal nitroso, Nitronatos e Nitroalcenos

Introdução

Nitroolefinas conjugadas (1) são amplamente empregadas como heterodienos em reações de Hetero-Diels-Alder (HDA) ou em cicloadições següenciais do tipo [4+2]/[3+2], veja esquema 1.1 Nas cicloadições de (HDA), as nitroolefinas reagem preferencialmente com alcenos ricos em elétrons (heterodienófilos) fornecendo nitronatos cíclico estáveis (2). Adicionalmente, esses nitronatos são excelentes 1,3-dipolos, os auais reagem preferencialmente com alcenos elétron-deficientes (1,3-dipolarófilos), em cicloadições [3+2]. Neste caso, o aduto obtido será o acetal nitroso (3), um precursor muito utilizado na síntese de alcalóides.

Esquema 1. (HDA) e cicloadições sequenciais

Devido à alta quimio- e regiosseletividade das nitroolefinas, frente a diferentes alcenos substituídos, é possível realizar cicloadições sequenciais do tipo [4+2]/[3+2], no mesmo pote.

A versão diastereosseletiva não recêmica dessas cicloadições utilizam em sua maioria auxiliares de quiralidade covalentemente ligados.² Por outro lado, a metodologia de *chiron approach*, onde um substrato quiral é utilizado, é bastante escassa.³

O nosso objetivo é estudar a reatividade das nitroolefinas quirais e inéditas (4a,b), e seus respectivos nitronatos (5a,b), em reações de cicloadições diastereosseletivas do tipo [4+2]/[3+2] utilizando a metodologia *chiron approach*, veja esquema 2.

4a, R₁ = Me (Nitroolefina oriunda da L-Ala) **4b**, R₁ = *i*-Bu (Nitroolefina oriunda da L-Leu)

Esquema 2. Formação do nitronato e subsequente formação do acetal nitroso

Resultados e Discussão

As nitroolefinas e seus respectivos nitronatos mostraram-se bastante reativos, frente às condições testadas, sendo as entradas 1 e 4-6, as mais produtivas em rendimento e diastereosseletividade, veja (esquema-tabela 1).

Esquema-tabela 1. Cicloadições com as nitroolefinas quirais oriundas de α-l -aminoácidos

Tilli Ooleiinas quirais oriundas de d-L-ariinoacidos					
Ent.	R ₁	R ₂	Cat./Sol./Tempo	Prod. ^c	R.d. ^d
1	Me	CO ₂ Me	PLTHF-H ₂ O ^a / 48 h	7 (45)	1:5
2	Ме	CO ₂ Me	PLEtOH-H2O ^b /168h	7 (34)	1:3
3	<i>i</i> -Bu	CO ₂ Me	TiCl ₂ (<i>i</i> -OPr) ₂ / 2-propanol/ 168 h	8 (50)	1:3
4	<i>i</i> -Bu	CO ₂ Me	PLTHF-H ₂ O/ 48 h	8 (65)	1:5,5
5	<i>i</i> -Bu	C≡N	PLTHF-H ₂ O/ 48 h	9 (70)	1:2
6	<i>i</i> -Bu	COMe	PLTHF-H ₂ O/ 48 h	10 (55)	1:2

a) Solução de LiClO₄ (4,7 M) em THF-H₂O (3:1). b) Solução de LiCl (4,7M) em EtOH-H₂O (3:1). c) Em parênteses, os rendimentos percentuais após cromatografia em gel de sílica. d) Razão diastereoisomérica determinada por espectroscopia de RMN-¹H e RMN-¹³C.

A respeito dos pares de diastereoisômeros formados, sugerimos com base na literatura, que a cicloadição [4+2] seja completamente diastereosseletiva e a [3+2] apresente apenas seleção diastereofacial de 5. Isto se explica devido à orientação exo do alceno elétron-deficiente, que é a mais favorecida, competir com a endo na formação do estereocentro HC(2') de 7-10.

Conclusões

A metodologia mostrou-se bastante eficiente gerando cicloadutos com bons rendimentos químicos e excelentes diastereosseletividades.

Agradecimentos

À capes pelo auxílio financeiro.

¹Denmark, S.E.; Thorarensen, A. Chem. Rev. **1996**, 96, 137 ²Denmark, S.E.; Martinborough, E.A. J. Am. Chem. Soc. **1999**, 121, 3046 ³Avalos, M. et al. J. Org. Chem. **1999**, 64, 1494