Tratamento de chorume usando o sistema foto-Fenton

Kelly C. Molder (IC)^{1,2}, Deborah C. de A. Freitas (IC)^{1,3}, Marcela dos P. G. Baltazar (IC)^{1,3}, Douglas do N. Silva (PQ)*^{1,4}, Cláudio A. O. Nascimento (PQ)^{1,5}, E-mail: douglas.nascimento@unifesp.br

Palavras Chave: foto-Fenton, Chorume.

Introdução

Os aterros sanitários são os locais para onde é destinado o lixo produzido nas cidades. Nos aterros, o rejeito sólido passa por processos naturais de biodegradação gerando gases (que podem ser usados para co-geração de energia) e um líquido de forte odor, cor escura e reconhecida toxicidade, conhecido como chorume. Este chorume apresenta alta carga orgânica (TOC) e demanda química de oxigênio (DQO), baixa concentração de oxigênio dissolvido (OD), alta turbidez e presença de uma série de compostos orgânicos. Este trabalho estuda o uso do processo foto-Fenton na redução de carga orgânica e toxicidade do chorume.

Resultados e Discussão

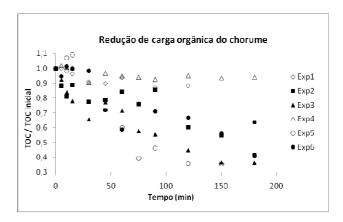

O estudo foi realizado em um reator fotoquímico com lâmpada de vapor de mercúrio de média Foi utilizada metodologia pressão. а do planejamento experimental, variando as concentrações de íons ferrosos e peróxido de hidrogênio (tabela 1) e as reações foram monitoradas através de análises de TOC, DQO, OD, Turbidez, DBO, cromatografia líquida de alta performance (HPLC) e cromatografia gasosa acoplada a espectrometria de massas.

Tabela 1. Concentrações de ferro e peróxido no planejamento experimental realizado

Experimento	[Fe+2] (mM)	[H2O2] (mM)
01 (pH inicial 7)	1,2 (+)	294,2 (+)
02	1,2 (+)	294,2 (+)
03	0,66 (0)	161,8 (0)
04	0,12 (-)	29,42 (-)
05	0,12 (-)	294,2 (+)
06	1,2 (+)	29,42 (-)

Durante os experimentos foi observada a formação de grande quantidade de espuma, que foi coletada e analisada, apresentando apenas compostos inorgânicos. Os resultados mostram redução de cor, turbidez (80%), 65% da carga orgânica (figura 1), DQO (70%), além de um aumento na concentração de oxigênio dissolvido e na relação DBO/DQO. Observou-se uma substancial redução dos picos

dos cromatogramas obtidos nas cromatografias gasosa e líquida, sendo verificada a completa oxidação de compostos aromáticos, restando, uma pequena quantidade de alifáticos, com pouca toxicidade, e de ácidos carboxílicos e aldeídos, que servem de substrato para os microorganismos em seu processo de crescimento.

Figura 1. Redução de carbono orgânico total nos experimentos com o processo foto-Fenton.

Conclusões

Estes resultados indicam a viabilidade de aplicação combinada de processos físicos (flotação para recuperação da espuma e das substâncias arrastadas pela mesma), químicos (foto-Fenton promovendo a oxidação dos orgânicos) e biológicos (para refinamento e remoção da carga orgânica biodegradável restante). O efluente resultante destes processos combinados pode ser aplicado na agricultura ou até mesmo para consumo humano, desde que seja realizado o devido tratamento de potabilidade aplicado a todas as águas que se destinam a este fim.

Agradecimentos

Os autores agradecem ao CEPEMA – USP, pela Estrutura Laboratorial, e o suporte financeiro da FAPESP, CNPq e CAPES.

33ª Reunião Anual da Sociedade Brasileira de Química

¹Centro de Capacitação e Pesquisa em Meio Ambiente – Universidade de São Paulo, ²Universidade Santa Cecília, ³Universidade Católica de Santos, ⁴Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, ⁵Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo.

¹ Moraes, J. E. F.; Quina, F. H.; Nascimento, C. A. O.; Silva, D. N. and Chiavone-Filho, O. Env. Sci. Tech. **2004**, 38, 1183.

² Mannarino C. F.; Ferreira J. A.; Campos J. C.; Ritter E. Eng. Sanit. Ambient., **2006**, 11, 108.