Otimização do Preparo da Solução do Nanocomposto Fulereno C₆₀ em Água

Marileni de S. Sallaberry Lopes ^{1*} (PG); Ednei G. Primel ² (PQ); Patrícia Gomes Costa ³ (PQ); Gilberto Filmann ⁴ (PQ).

1,3,4 <u>krassa@pop.com.br</u> Instituto de Oceanografia. Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática (CONECO).

Palavras Chave: Fulereno C₆₀, Solução Aquosa de C₆₀, Fulereno em Matriz Aquosa.

Introdução

fulereno C₆₀ apresenta propriedades físico-químicas que propiciam seu diferentes áreas da tecnologia. emprego causando assim um vasto crescimento na sua aplicação pela indústria. Devido essa alta demanda do composto no meio industrial, acredita-se que o ambiente aquático seja o destino final mais provável do C₆₀. Isso preocupa os cientistas, pois embora seja desconhecido seu comportamento no ambiente sabeque ele, apesar de apresentar características hidrofóbicas, em contato com a água forma colóides que servem como carreador para contaminantes como os metais e compostos orgânicos, facilitando assim a entrada destes contaminantes nos organismos vivos, devido sua afinidade lipofílica1.

A metodologia utilizada para preparar a solução de fulereno em água pura consiste na solubilização do composto por agitação constante e exposição à luz durante 60 dias 2. Preparar o fulereno em solução aquosa sem a interferência de solventes orgânicos é a forma mais representativa das reais circunstâncias encontradas no ambiente aquático e a mais cooperente para julgar os efeitos associados somente ao C_{60} , evitando o possível engano dos efeitos aditivos ou sinérgicos quando associado aos solventes orgânicos. O maior desafio encontrado hoje para a avaliação dos riscos ambientais e ecotoxicológicos do C_{60} é a preparação da solução de forma mais semelhante possível à encontrada no ambiente 3. Sendo assim esse trabalho tem como objetivo preparar uma solução de fulereno em água ultra pura obitida em sistema Milli-Q®, buscando otimizar seu tempo de preparo.

Resultados e Discussão

Para o desenvolvimento desse trabalho foram preparados quatro testes diferentes conforme mostra a tabela 1. No preparo das soluções foram pesados 200 mg de fulereno e colocados em 1 L de água ultra pura obitida em sistema Milli-Q[®]. As

soluções não acidificadas mantiveram-se agitação constante e exposição à luz por 60 dias e as soluções acidificadas mantiveram-se sob agitação constante e exposição à luz por 15 dias. O preparo das amostras para análise foi por extração em fase sólida (EFS) com cartucho empacotado com 200 mg de C18 em seringa de de 3 mL. Para determinação concentração utilizado um foi cromatográfico composto composto por bomba Perkin Elmer Series 200 LC Quartenary Version; injetor manual Perkin Elmer Series 200; alça de injeção de 20 μL; detector UV/VIS; sistema de aguisição de dados e integrador TotalChrom Workstation 6.3, coluna C18 Phenomenex® (4,6 x 150mm, 5µ). As condições de operação foram: fase móvel tolueno/acetronitrila na proporção (60:40 v/v), a uma vazão de 1,2 mL/minuto e λ = 333 nm.

Tabela 1. Condições dos testes para solução de fulereno $C_{60}\,$

Tratamento		Sem	Com
		aquecimento	aquecimento
		•	•
Sem acidificação		Х	Х
	· ·		
Com	5mL HCI-	X	X
acidificação	1M		
	7mL HCI-	X	Χ
	1M		
Método de extração		EFS	
		<u> </u>	
Massa C ₆₀ para 1L de água		200 mg	
ultra pura*			•
·			
* Agua ultra pura abitida am aistama Milli O®			

^{*} água ultra pura obitida em sistema Milli-Q®

Em análises preliminares as soluções não acidificadas (60 dias de preparo) apresentaram concentrações inferiores aos das soluções acidificadas (15 dias de preparo).

Os dados para o tratamento com aquecimento, ainda estão sendo analisados.

² Escola de Química e Alimentos. Programa de Pós Graduação em Química Tecnológica e Ambiental. Laboratório de Análises de Contaminantes Orgânicos e Metais (LACOM).

Conclusões

Os resultados obtidos até o momento indicam que as soluções acidificadas apresentam maior índice de solubilização do fulereno com tempo de preparo 3 vezes menor ao da solução preparada sem acidificação.

A solução acidificada com 7 mL de HCl – 1M apresentou melhor resultado.

Desta forma o objetivo proposto nesse trabalho foi atingido.

Agradecimentos

CAPES, FURG, CONECO, QTA.

¹Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? *Environment International* **2006**, 32, 967-976.

²Oberdörster E., Zhu S., Blickley M., McClellan-Green P., Haasch M.I.

Ecotoxicology of carbon-based engineered nanoparticles: effect of fullerene (C60) on aquatic organisms. **2006**. Carbon, 44: 1112-1120.

³Hassellöv, M.; Readman, J. W.; Ranville, J. F.; Tiede, K. Nanoparticle. Analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. **2008**. *Ecotoxicology*, 17: 344-361.