Estudo Calorimétrico do Metabolismo de um Solo *Eutrodox Rhodic* Manejado sob Três Diferentes Condições.

Amanda Carolina Covizzi Bertelli¹ (PG), Cláudio Airoldi² (PQ), José de Alencar Simoni³ (PQ).

1-abertelli@igm.unicamp.br, 2-airoldi@igm.unicamp.br, 3-caja@igm.unicamb.br

Palavras Chave: Solo, Atividade microbiana, Calorimetria, Efeito estufa.

Introdução

O alvo desse projeto é fazer um exame comparativo entre a atividade microbiana de um solo *Eutrodox Rhodic*, da região nordeste do estado de São Paulo, manejado sob três diferentes condições: cultivado com cana-de-açúcar, cultivado com cítricos e de área de mata virgem. O estudo se baseia fundamentalmente em dados calorimétricos, os quais permitem inferir sob o estado de conservação do solo. Os resultados mais importantes se referem à relação entre as quantidades de matéria orgânica catabolisada/anabolisada. A grande vantagem do método calorimétrico nessas determinações é a sua velocidade e precisão.

Resultados e Discussão

O estudo calorimétrico corresponde ao acompanhamento da energia liberada no processo de depleção de glicose pelas diversas amostras de solo, em condições aeróbicas. Alguns dados de análise química e biológica dos solos, são apresentados nas tabelas 1 e 2.

Tabela 1. Dados de determinação do pH, da acidez total e da quantidade de matéria orgânica.

Solo	[H [†]] / mmol.g ⁻¹ de solo	pH em água	pH em CaCl ₂	MO/ mg g ⁻¹ de solo		
Cana	0,0497	5,08	4,29	23,2		
Laranja	0,0141	6,95	6,38	24,6		
Mata	0,0532	5,46	4,76	49,4		

Tabela 2. Dados da contagem de fungos e bactérias e actiniomicetos

c dottillorilloctos.					
Dado	Solo(cana)	Solo	Solo (mata)		
		(laranja)			
Bact. e Act/ ufc g ⁻¹ /10 ⁵	0,320±0,123	2,68±1,06	0,463±0,188		
Fungos/ ufcg ⁻¹ / 10 ⁴	0,352±0,150	0,362±0,190	2,19±1,33		

Os resultados da microcalorimetria estão apresentados na tabela 3.

Tabela 3. Resultados da microcalorimetria aplicada os três tipos de solo.

-			
Dado	Solo (Cana)	Solo (Laranja)	Solo (Mata)
η _Η /%	62,2 ± 0,8	54,9 ± 0,6	63,9 ± 1,7
Q / J g ⁻¹	$5,8\pm0,1$	$\textbf{6,8} \pm \textbf{0,1}$	$5,5\pm0,3$
P _T /h	$13,2\pm0,5$	$8,2\pm0,9$	$20,3\pm0,6$
$Y_{Q/X}/kJ$ $mol^{-1} X$	304 ± 42	218 ± 15	511 ± 30
$Y_{X/S}$	$3,51\pm044$	$5,\!84\pm0,\!47$	$1,99 \pm 0,\!60$
$\Delta_{ m R}$ Hs / kJ mol $^{ m 1}$	1050 ± 29	1263 ± 18	1013 ± 48
k /min ⁻¹ 10 ⁻³	$2,28 \pm 0,16$.	3,18± 0,11	$1,13\pm0,06$

Conclusões

- Os resultados obtidos via calorimétrica, mostram que os solos mantidos sob cultivo apresentam menor rendimento na assimilação de carbono como matéria viva (η_H).
- A fase de crescimento é atingida mais rapidamente pelo solo sob cultivo de laranja (P_T), o que está diretamente relacionado ao maior número de bactérias nesse solo.
- Embora o solo da mata virgem tenha uma quantidade muito maior de fungos, como o metabolismo destes é mais lento, o tempo de peak time é maior para esse solo.
- A variação de entalpia no catabolismo ($\Delta_R Hs$) é maior para os solos sob cultivo, indicando uma maior contribuição ao efeito estufa global

Agradecimentos

FAPESP, CNPq e Capes.

³³ª Reunião Anual da Sociedade Brasileira de Química