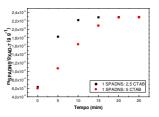
Adsorção do SPADNS em resina XAD 7: uma avaliação crítica da cinética e isoterma de adsorção

Ana Carolina Ribeiro Gomes (PG)* e Ivanise Gaubeur (PQ) ana.gomes@ufabc.edu.br

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, CEP 09210-170, Santo André, SP, Brasil

Palavras Chave: Adsorção, SPADNS, CTAB e XAD-7.


Introdução

A modificação de fases sólidas com reagentes complexantes tem se mostrado uma alternativa interessante na obtenção de novas fases com características favoráveis para a pré-concentração e determinação de íons metálicos presentes em diversos tipos de amostras. A modificação pode ocorrer através da fisiossorção ou quimiossorção, a primeira ocorre através da adsorção física em, por XAD exemplo. resinas em reagentes complexantes como o SPADNS (sal trissódico do 1,8-dihidróxi-2-(4-sulfofenilazo)-3,6ácido naftalenodisulfônico). O presente trabalho tem como objetivo apresentar uma avaliação crítica, através dos modelos cinéticos de pseudo-primeira ordem (PPO), pseudo-segunda ordem (PSO) e difusão intra-partícula (DIP) e dos modelos das isotermas de Langmuir (L), Dubinin-Radushkevich (D-R) Freundlich (F), da adsorção do SPADNS a resina XAD 7.

Resultados e Discussão

O SPADNS apresenta diferentes espécies em função do valor de pH. A dissociação dos três grupos sulfonas — SO_3 Na^+ (H_2L^3 -), predomina em valor de pH < 8,0 e foi a escolhida para avaliar a adsorção na resina XAD 7, uma vez que estudos preliminares mostraram que as provenientes da desprotonação das hidroxilas (HL4e L⁵), pH > 9,5, não adsorveram na resina. Inicialmente foi construída a curva analítica do SPADNS (espectrofotômetro Shimatzu UV-2450 e cubetas de quartzo 1,0 cm) que apresentou uma faixa linear (1,0 a 4,0)x 10⁻⁵ mol L⁻¹ e parâmetros: $A_{508} = 2,23x \cdot 10^4 C_{SPADNS} + 0,010(r \cdot 0,9999)$. Colocouse a solução de SPADNS 4,00 x 10⁻⁵ mol L⁻¹ em contato com 0,1g de resina sob agitação e temperatura (25±1 °C) constantes e observou-se que após 24h somente 6,7% do SPADNS foi adsorvido. Assim optou-se em avaliar a adsorção do par iônico formado entre o SPADNS e tensoativo catiônico CTAB (brometo de cetiltrimetil amônio). A curva analítica foi construída, em pH 7,0 e em meio de CTAB, e apresentou os parâmetros: A= 1,79x 10⁴ C_{SPADNS} + 0,001 (r 0,9990). Inicialmente avaliou-se a adsorção em função da concentração do CTAB em 1,0 e 2,0x10⁻⁴mol L⁻¹. Observa-se, Figura 1, que o par iônico apresentou máxima adsorção em 20 min independente da concentração de CTAB e assim resolveu-se mantê-la 1,0 x 10⁻⁴ mol L⁻¹. Os dados experimentais, massa adsorvida em função do tempo, foram ajustados aplicados aos modelos

cinéticos PPO, PSO e DIP e apresentaram excelente ajuste ao modelo PSO. Mantendo-se o tempo de contato e a temperatura constantes, avaliou-se a adsorção em função da concentração de SPADNS (0,70 a 1,5x10⁻⁴ mol L⁻¹), em meio de CTAB 1,0x 10⁻⁴ mol L⁻¹ e pH 7, e os dados experimentais foram ajustados aos modelos de isoterma de L, F e D-R (Tabela 1).

Figura 1. Variação da massa de SPADNS adsorvida por grama de XAD-7 em função do tempo.

Tabela 1. Parâmetros dos modelos de isotermas.

Langmuir	
m ^{max} _{ads} (g g ⁻¹)	K _L (L g ⁻¹)
(7,64±0,01)x10 ⁻³	(1,41±0,01)x10 ⁶
Freundlich	
n	K _F (g g ⁻¹)
6,50±0,2	(4,13±0,02) x10 ⁻²
Dubinin- Radushkevich	
E (KJ mol ⁻¹)	K _{D-R} (mol g ⁻¹)
22,5±0,01	(2,76±0,01)x10 ⁻⁴

Conclusões

A adsorção do SPADNS em XAD-7 ajustou-se ao modelo de PSO, onde considera-se que cada molécula de adsorbato liga-se a dois sítios de adsorção da superfície do adsorvente. Verificou-se à partir das isotermas de adsorção que os sítios de adsorção são energeticamente heterogêneos (n > 1) e que a adsorção é física por apresentar energia de adsorção (E) entre 4 e 40 KJ mol⁻¹. A adsorção apresentou ajuste aos 3 modelos de isoterma (r > 0,99)

Agradecimentos

Universidade Federal do ABC e FAPESP (2008/09545-1)

¹ Freitas, P. A. M.; et. al. J. of Colloid and Interface Sci. **2008**, *1*, 323.