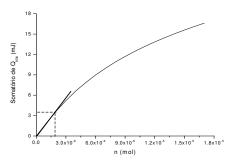
Determinação de parâmetros termodinâmicos da interação entre o herbicida Glifosato e os íons Cu²⁺, Ca²⁺, Zn²⁺ e Al³⁺.

Flávio Adriano Bastos 1 (PG)*, José de Alencar Simoni 2 (PQ)

Instituto de Química, Universidade Estadual de Campinas – Caixa Postal 6154, CEP: 13.083-970 - Campinas – SP – Brasil, *flavioab@yahoo.com.br

Palavras Chave: Glifosato, microcalorimetria, equilíbrio químico, titulação calorimétrica, termodinâmica, herbicida.


Introdução

O objetivo deste trabalho é a determinação de parâmetros termodinâmicos da interação entre o herbicida Glifosato e os nitratos de cobre, cálcio, zinco e alumínio em solução aquosa. Ele é hoje o herbicida mais usado no mundo. Devido à presença dos grupos carboxilato, fosfonato e amina, apresenta grande tendência em formar complexos fortes com metais [1].

A técnica utilizada foi a calorimetria por titulação isotérmica (ITC), sendo os experimentos realizados a 298 \pm 1 K, pH \approx 3,30 e força iônica 0,1 mol L $^{-1}$ (KNO $_{\!3}$). Os valores de $\Delta_{\!r}H^{e}$ foram calculados pelo "Método das tangentes" $^{[2]}$ e, baseado em valores de constantes de formação do complexo Glifosato-metal da literatura $^{[3]}$, através de equações clássicas da termodinâmica, determinou-se os valores de $\Delta_{\!r}S^{e}$ e $\Delta_{\!r}G^{e}$.

Resultados e Discussão

O Método das tangentes baseia-se na premissa de que as constantes de estabilidade apresentam valores elevados. Assim, plotando-se num gráfico os valores de ΣQ_{obs} (calor observado experimentalmente) versus o número de mols de metal adicionado pode-se calcular, através da tangente da curva nos primeiros 3 ou 4 pontos experimentais, o valor de variação de entalpia, conforme apresentado na Figura 1:

Figura 1. Método das tangentes para Cu²⁺ e Glifosato.

Através das equações 1 e 2, a seguir, calcula-se os valores de $\Delta_r S^e$ e $\Delta_r G^e$:

$$\Delta_r G^{\theta} = -R T InK$$
 (Equação 1)
e $\Delta_r G^{\theta} = \Delta_r H^{\theta} - T \Delta_r S^{\theta}$ (Equação 2)

Os resultados de $\Delta_r H^e$, $\Delta_r S^e$, $\Delta_r G^e$ da interação do herbicida com os quatro íons são apresentados na tabela 1:

Tabela 1. Resultados dos parâmetros da interação do Glifosato com os íons Ca²⁺, Cu²⁺, Zn²⁺ e Al³⁺.

	$\Delta r H (10^3 \text{ Jmol}^{-1})$	$\Delta rG (10^6 \text{ J mol}^{-1})$	$\Delta rS (10^3 \text{ J mol}^{-1} \text{ K}^{-1})$
~ 2+			
Ca ²⁺	$+0.35 \pm 0.01$	- 18,8 ± 1,0	$+63.2 \pm 1.0$
Cu ²⁺	$+ 17,38 \pm 0,46$	- 67,9 ± 1,0	+ 227,7 ± 1,0
Zn ²⁺	$+0.68 \pm 0.03$	- 49,7 ± 1,0	+ 166,6 ± 1,0
Al ³⁺	-0.27 ± 0.01	- 78,2 ± 1,0	$+262,3 \pm 1,0$

Conclusões

A partir dos dados da Tabela 1, conclui-se que os processos são entropicamente dirigidos, dado os elevados valores de $\Delta_r S^{\text{e}}$ em relação aos de $\Delta_r H^{\text{e}}$, que além endotérmicos (exceto o alumínio), apresentam valores bastante inferiores. Além disso, os valores negativos de $\Delta_r G^{\text{e}}$ indicam o sentido da ocorrência espontânea dos processos estudados.

Agradecimentos

CNPq, FAPESP, CAPES e Instituto de Química da Unicamp.

¹ Undabeytia, T.; Morillo, E.; Maqueda, C., J. of Agricultural and Food Chemistry. **2002**, 50 (7), 1918.

² Jordan, J.; Treatise on Analytical Chemistry, 1986, Part I.

³ Popov et al.; Pure Appl. Chemistry, **2001**, 73, 1641.