Avaliação da toxicidade por *Artemia salina* do extrato etanólico de *Solanum paniculatum* metabolizada por *Chromacris speciosa*

Natália S. M. Ramos (IC)¹, Telma M. G. da Silva (IC)¹, Rodolfo R. Silva (IC)¹, Marcílo M. Moraes (PG)¹, Cláudio A.G. da Câmara (PQ)¹, Argus V. de Almeida (PQ)², Clécio S. Ramos (PQ)¹

¹ Laboratório de Produtos Naturais Bioativos, Departamento de Química – UFRPE, Recife.

Palavras chave: Solanum paniculatum, Chromacris speciosa, Artemia salina, metabolismo.

Introdução

A Solanum paniculatum (Solanaceae) é uma planta popularmente conhecida como jurubeba e bastante usada na medicina popular no tratamento de disfunções gastro-hepáticas¹. O estudo químico prévio revelou a presença de saponinas, glicoalcalóides, flavonóides e alcalóides ². Apesar da presença de glicoalcalóides e alcalóides, com propriedades aleloquímica, conhecida paniculatum é frequentemente atacada por insetos, incluindo gafanhoto do gênero Chromacris. A espécei C. speciosa é uma praga secundária associada a S. paniculatum. O presente trabalho teve como objetivo avaliar a toxicidade por Artemia salina do extrato etanólico das fezes de C. speciosa alimentado por folhas de S. paniculatum.

Resultados e Discussão

As amostras para realização dos testes de toxicidade frente *A. salina* foram: a) extrato etanólico das folhas de *S. paniculatum* e b) extato etanolico das feses de *C. speciosa*. As folhas de *S. paniculatum* foram coletadas no campus da UFRPE e seca em estufa a 45°C por 2 dias. O material seco e triturado (150 g) foi extraído com etanol que após secagem em rotavapor produziu 4g de extrato bruto. Os gafanhotos *C. speciosa* (Fig.1) foram mantidos em gaiolas teladas, contendo recipiente para postura e submetidos a uma dieta única com folhas de *S. paniculatum*, trocadas a cada dois dias.

Fig. 1: Ninfas de *C. speciosa* em folhas de *S. paniculatum* (direita) e o adulto conhecido como soldado brasileiro devido a sua coloração à esquerda.

A criação de cultura de *A. salina* L. foi realizado de acordo com a metodologia descrita por Meyer et al.³, com modificações. Os cistos de *A. salina* foram incubados em salmoura artificial e, após 24h de eclosão, 10 larvas foram adicionadas em tubos contendo soluções dos extratos entre 1µg/mL e 250 µg/mL. Após 24 horas foram calculados o percentual

de mortalidade e o valor da CL_{50} que é mostrado na Tab. 1. Os ensaios foram realizados em triplicata. A contagem do número de larvas foi realizada após 24 horas e os valores obtidos foram usados para o cálculo da CL_{50} utilizando-se do programa POLO. De acordo a classificação de toxicidade de extratos com base nos valores estimados da CL_{50} (μ g/mL), os extratos podem ser: altamente tóxicos (CL_{50} <80), moderadamente tóxicos (80< CL_{50} <250) e de baixa toxidade (CL_{50} >250)⁴. A toxicidade dos extratos é mostrada na Tabela 1.

Tabela. 1: Toxicidade para os extratos das folhas de S. e material fecal

Extrato	Equação (IC 95%)	CL ₅₀ (I.C.95%)
Folha	$Y = 2,80 + 1,85 \log x$	15,1
	(1,59- 2,11)	(11,9- 21,4)
Fezes	$Y = 2.84 + 0.98 \log x$	152,69
	(0,72- 1,25)	(59,48- 2450,68)

* Intervalo de confiança a 95% de probabilidade para o coeficiente angular.

Desta forma podemos perceber que os valores obtidos para CL_{50} demonstram que o extrato das folhas de S. paniculatum é altamente tóxico. No entanto, podemos observar uma variação na sua toxidade após metabolizadas pelo C. speciosa para uma classificação de baixa toxidade. Análises preliminares com o reagente Dragendorff de indicou a presença de alcalóides nos extratos das folhas e fezes. Os perfis cromatográficos por CLAE e CCD dos extratos foram diferenciados indicando uma possível biotransformação dos metabólitos das folhas de S. paniculatum pelo C. speciosa.

Conclusões

Esses resultados corroboram a hipótese que insetos superam defesas químicas de plantas biotransformando seus metabólitos para formas menos tóxicas.

Agradecimentos

CNPq, FACEPE.

¹Mesia-Vela, S. et al., *Phytomedicine*, 2002, 9, 508. ²Schreiber, K.N. *Chemische Technik*, 1954.6: 648- 657. ³Meyer, B.N. et al., *J. Med. Plant Res.* **1982**, *45*, 31. ⁴Dolabela, M. F., Dissertação, 1997. UFMG.

² Laboratório de Entomologia, Departamento de Biologia - UFRPE- Recife – <u>csramos13@hotmail.com</u>