Estudo do espaço ativo do elemento Gálio.

André Luiz Fassone Canova¹(PG)*, Julio Ricardo Sambrano²(PQ) Aguinaldo Robinson de Souza¹(PQ)

UNESP - Univ Estadual Paulista, ¹ Departamento de Química, ² Departamento de Matemática, Programa de Pós-Graduação em Ciência e Tecnologia de Materiais – POSMAT. *alfcanova@fc.unesp.br

Palavras chave: Gálio, ab initio, espaço ativo.

Introdução

O elemento químico Gálio (Ga) tem número atômico 31, massa atômica igual a 69,7 uma, e configuração eletrônica $1s^22s^22\rho^63s^23\rho^63d^{10}4s^24\rho^1$. É um metal pertencente ao grupo 13 (3A) da classificação periódica dos elementos e na temperatura ambiente encontra-se no estado líquido. Na medicina nuclear é empregado como elemento traçador (escâner de gálio) no diagnóstico de enfermidades inflamatórias ou infecciosas, tumores e abcessos. De grande interesse se reveste o estudo dos processos eletrônicos radiativos e não radiativos referentes à este elemento. A partir da configuração eletrônica inicial, podemos explorar alguns estados excitados e verificar a estabilidade relativa desta nova configuração frente á excitação. Por exemplo, a partir da configuração do estado eletrônico fundamental, $1s^22s^22p^63s^23p^63d^{10}4s^24p^1$, pode-se obter o estado excitado $1s^2 2s^2 2p^5 3s^2 3p^6 3d^{10} 4s^2 4p^2$, promovendo um elétron do nível 2p para o nível 4p. No presente trabalho estudamos o espaço ativo do átomo de Ga com o intuito de se conhecer as energias relativas dos possíveis estados eletrônicos excitados como um suporte para futuros cálculos multi-configuracionais do tipo Hartree-Fock Multiconfiguracional (MCHF)¹.

Resultados e Discussão

As energias das configurações, onde excitamos os elétrons dos níveis 1s, 2p, 2s, 3d, 3s e 4s para o nível 4p, foram obtidas através da metodologia de cálculo Hartree-Fock². O programa computacional, escrito na linguagem de programação Fortran 90, está disponibilizado na suíte de programas MCHF/MCDHF. Na tabela 1 apresentamos as energias totais, E_{NR} (energia não relativística) e E_{R} (energia com correção relativística). As correções relativísticas foram obtidas através do Hamiltoniano de Breit-Pauli apresentado na equação abaixo.

 $H_{BP}=H_{NR}+H_{RS}+H_{FS}$ onde H_{NR} é o Hamiltoniano não relativístico, H_{RS} é o operator relativístico que comuta \mathbf{L} e \mathbf{S} e H_{FS} é o operador de estrutura fina que descreve a interação entre o spin e o momento angular dos elétrons e comuta com o momento angular total $\mathbf{J}=\mathbf{L}+\mathbf{S}$. Podemos verificar, através da análise da Tabela 1, que a estabilidade das configurações diminui a partir da promoção dos elétrons da configuração do

estado fundamental, que apresenta configuração $1s^22s^22\rho^63s^23\rho^63d^{10}4s^24\rho^1$, até a configuração onde um elétron é excitado do nível 1s para o nível 4p, com configuração $1s^12s^22\rho^63s^23\rho^63d^{10}4s^24\rho^2$. As correções relativísticas levam á uma estabilização adicional da configuração como, por exemplo, para a configuração $1s^22s^22\rho^63s^23\rho^63d^94s^24\rho^2$ temos um deslocamento relativístico igual a -18.2662 u.a. em relação á energia não relativística.

Tabela 1. Energias totais (u.a.) para o espaço ativo do átomo de Ga.

Configuração	E _{NR}	E_R
$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$	-1923.2610	-1941.5010
$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1 4p^2$	-1923.0647	-1941.2963
$1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2 4p^2$	-1922.5668	-1940.8330
$1s^2 2s^2 2p^6 3s^2 3p^5 3d^{10} 4s^2 4p^2$	-1919.3058	-1937.5088
$1s^2 2s^2 2p^6 3s^1 3p^6 3d^{10} 4s^2 4p^2$	-1917.4029	-1941.2963
$1s^2 2s^2 2p^5 3s^2 3p^6 3d^{10} 4s^2 4p^2$	-1881.2373	-1899.2517
$1s^2 2s^1 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$	-1872.7644	-1889.9195
$1s^{1}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{2}$	-1455.4894	-1469.5117

Conclusões

Obtivemos as energias totais das configurações eletrônicas do espaço ativo do átomo de Ga com e sem correção relativística. A estabilidade das configurações diminui á medida que excitamos elétrons mais próximos do core. A correção relativística leva á uma maior estabilidade da configuração para todos os valores de **n** e **l**.

Agradecimentos

Os autores agradecem aos comentários e sugestões feitas pela pesquisadora Charlotte Froese Fischer (Valberbilt University e NIST – USA) e ao CNPq, FAPESP e FUNDUNESP.

¹ Fischer, C. F.; Brage, T.; Jonsson, P. Computational Atomic Structure: An MCHF Approach. Institute of Physics Publication, Bristol, 1997.
² Fischer, C. F. The Hartree-Fock Method For Atoms: A Numerical Approach. Wiley-Interscience Publications, New York, 1977.