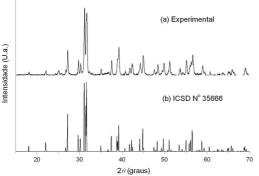
Nanofibras de Sr₂SiO₄ Obtidos Pelo Método do Sal Fundido

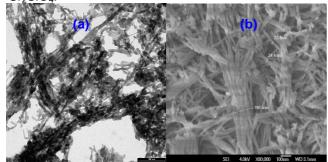
Jones¹ Leite Soares (PG), Flávio² Maron Vichi (PQ)*.

E-mail: fmvichi@ig.usp.br

1,2 Instituto de Química da Universidade de São Paulo, Cidade Universitária, São Paulo - SP. CEP 05513-970


Palavras Chave: Sr₂SiO₄, ortossilicato, nanofibras.

Introdução


Ortossilicato de estrôncio (Sr₂SiO₄) tem sido utilizado como matriz para dopagens com európio em virtude de sua estabilidade química e física^{1,2}. Tanto a matriz como fósforos de Sr₂SiO₄ são sintetizados pelo método de estado sólido ou também pelo método sol-gel, sendo obtidos a 1100-1300°C². O método do sal fundido tem atraído uma atenção especial por ser um dos métodos mais simples e de baixo custo na obtenção de materiais cristalinos, quimicamente puros temperaturas e frequentemente em geral, tempos de reação mais curtos quando comparados com reações convencionais de estado sólido³. Em razão disso, sintetizamos o Sr₂SiO₄ pelo método do sal fundido a 600°C utilizando Sr(NO₃)₂ e SiO₂ MCM-41, de alta área superficial, como materiais de partida.

Resultados e Discussão

O Sr_2SiO_4 foi obtido a 600°C (Sr/Si = 2:1) de acordo com o difratograma abaixo:

Figura 1. Difratograma do Sr_2SiO_4 (a) obtido a 600°C por 2 horas a 5°C min⁻¹ e (b) do padrão do α' - Sr_2SiO_4 .

Figura 2. Micrografias eletrônicas (a) de transmissão e (b) de varredura do Sr₂SiO₄.

 $\begin{array}{c} 2Sr(NO_3)_2 + SiO_2 \rightarrow Sr_2SiO_4 + 4NO_2 + O_2 \ (1) \\ 2Sr(NO_3)_2 + SiO_2 \rightarrow Sr_2SiO_4 + 2N_2 + 5O_2 \ (2) \\ \textbf{Esquema 1.} \ \ Possíveis \ \ reações \ de \ formação \ do \\ Sr_2SiO_4. \end{array}$

A Fig. 1 não revela qualquer pico referente a impurezas, tais como a formação de outras espécies de silicatos.

A sílica MCM-41 apresentou uma área superficial de 1267 m² g¹ utilizando o método BET da adsorção/dessorção de N₂.

À medida que se aumenta a temperatura da mistura de reagentes, ocorre não apenas a expansão térmica da rede cristalina do nitrato de estrôncio, mas também um aumento da mobilidade iônica dos íons Sr^{2+} na rede. Essa mobilidade iônica pode fazer com que esses íons se liguem à superfície da sílica, fazendo com que a temperatura de fusão do sal diminua. Então ocorre a difusão dos íons Sr^{2+} para o núcleo das partículas de SiO_2 com formação de produtos gasosos, de acordo com o esquema proposto. Os produtos gasosos da Reação 1 são os mesmos já determinados na decomposição térmica do $Sr(NO_3)_2$ em trabalhos anteriores, mas a Reação 2 é mais favorecida entropicamente devido à formação de maior número de mol de gases.

A Fig. 2a mostra a estrutura tubular do silicato. A Fig. 2b mostra que o silicato tem a forma de nanofibras com diâmetros em torno de 20-25 nm, sendo que essas nanofibras tendem a se sobreporem (190 nm).

Conclusões

A formação do Sr_2SiO_4 , de estrutura ortorrômbica, numa temperatura mais baixa se deve a dois fatores: (1) a alta área superficial da sílica MCM-41 e (2) ao baixo ponto de fusão do nitrato de estrôncio (570°C).

Agradecimentos

Os autores agradecem à CAPES, CNPq e UNICAMP.

Hu, W-H; Sheng, M-H.; Tsai, M-S. J. Alloys Compd. 2009, 467, 491.
Qiao, Y.; Zhang, X.; Ye, X.; Chen, Y.; Guo, H. J.Rare Earths. 2009, 27, 323.

³ Wong, SS.; Mao, Y.; Park, T-J.; Zhang, F.; Zhou, H. Small. 2008, 3, 1122.