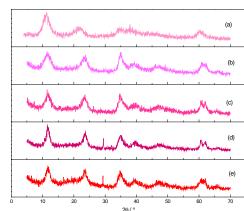
# Avaliação da cristalinidade de hidrotalcitas substituídas por cobalto

Stephane B. P. Farias<sup>1\*</sup>(PG), Sandra S. X. Chiaro (PQ)<sup>2</sup>, Renata Diniz<sup>1</sup>(PQ). stephane\_farias@hotmail.com

Palavras Chave: hidrotalcitas, difração de raios x, cristalinidade.

#### Introdução


As hidrotalcitas são argilas naturais ou sintéticas definidas como hidróxidos duplos lamelares (HDL). compostos exibem várias propriedades estruturais e químicas, além de possuir uma grande estabilidade térmica, que os tornam de grande importância tecnológica na obtenção de novos catalisadores. A estrutura básica lamelar dos HDL é baseada na da brucita [Mg(OH)<sub>2</sub>], que consiste de íons magnésio rodeado octaedricamente por íons hidroxila<sup>1,2</sup>. A substituição de parte dos cátions divalentes por cátions trivalentes dão origem aos hidrotalcita. compostos tipo Esses compostos possuem as lamelas carregadas positivamente que são contrabalanceadas por ânions. A possibilidade de variar a identidade e a proporção dos cátions di- e trivalentes assim como a identidade dos ânions interlamelares fornecem uma grande variedade de materiais cuja fórmula geral é M<sup>II</sup><sub>1-x</sub>M<sup>III</sup><sub>x</sub>(OH)<sub>2</sub>(A<sup>m-</sup> )<sub>x/m</sub>•nH<sub>2</sub>O. Hidrotalcitas com mais de dois tipos de metais são chamados de HDL ternários, e normalmente envolvem dois diferentes cátions metálicos de carga +2 (M<sup>II</sup>), podendo variar a razão M<sup>II</sup>/M<sup>III</sup> . A co-precipitação<sup>1,3</sup> é o método mais utilizado para preparar HDL.

Este trabalho descreve a síntese de hidrotalcitas substituídas por cobalto, pelo método de coprecipitação com proporções diferentes entre Mg/Co. Os produtos formados foram analisados por difração de raios X para avaliação do grau de cristalinidade.

#### Resultados e Discussão

Os compostos foram sintetizados pelo método de coprecipitação utilizando pH variável com a proporção  $M^{II}/AI^{3+}=2$ . A substituição do  $Mg^{2+}$  pelo  $Co^{2+}$  foi realizada nas proporções de 25%, 50%, 75% e 100%. Para a avaliação da cristalinidade utilizou-se a técnica de difração de raios x de material policristalino (pó) em um difratômetro marca Rigaku, modelo Geigerflex utilizando tubo de cobalto ( $K_{\alpha}Cu=1,78$  Å). Os dados foram coletados na faixa de 20 entre 5° e 70°. As fendas foram DS/SS=1° e RS=0,6 mm com geometria de Bragg-Brentano.

Todos os materiais sintetizados mostraram difratogramas característicos de hidrotalcitas, com picos em 11,7°, 23,7°, 34,8° e 60,7° em 2 $\theta$ . A figura 1 mostra os difratogramas obtidos.



**Figura 1.** Difratograma das amostras de HDL, contendo em a) 0%, b) 25 %, c) 50%, d) 75% e e) 100% de  $Co_{2+}$  no sitio M $^{\parallel}$ .

O difratograma mostra de *a-e* as proporções de 0 a 100% de cobalto, respectivamente. Pode-se observar que com o aumento da proporção de cobalto nas hidrotalcitas há um pequeno aumento na cristalinidade que pode ser verificada por uma ligeira diminuição da largura a meia altura do pico 006, que é o mais intenso em 2θ = 11,7°. Além dos picos em torno de 23°, 35° e 60° serem mais estreitos em relação à hidrotalcita não substituída (difratograma *a*). Os resultados de difração de raios X sugerem que a substituição na proporção de 75% de cobalto (Fig. 1d) favorece a formação de um HDL mais cristalino devido aos picos mais intensos, estreitos e bem definidos em comparação com os demais difratogramas.

## Conclusões

Foi possível, neste trabalho, sintetizar compostos tipo hidrotalcitas pelo método de co-precipitação com baixo grau de cristalinidade. Os resultados demonstraram que embora seja mais simples, a síntese realizada sem controle de pH, forma compostos pouco cristalinos. Entretanto, utilizar um tratamento hidrotérmico após a síntese com pH variável pode auxiliar no aumento da cristalinidade desses compostos.

### Agradecimentos

FAPEMIG, CENPES, LabCri (DF-UFMG)

<sup>&</sup>lt;sup>1</sup>Departmento de Química, Universdade Federal de Juiz de Fora, Juiz de Fora, Brasil.

<sup>&</sup>lt;sup>2</sup> CENPES, Petrobrás, Rio de Janeiro - RJ

<sup>&</sup>lt;sup>1</sup> Crepaldi, E.L., Valim, J.B., Química Nova, volume 21, 300 (1998).

<sup>&</sup>lt;sup>2</sup> Cavani, F., Trifiro, F.; Vaccari, *Catalysis Today*, **volume 11**, 173(1991)

<sup>&</sup>lt;sup>3</sup> Miyata, S., Clay Clay Minerals, volume 23, 369-375 (1975).