Caracterização de um novo material adsorvente obtido a partir de resíduos de poliisopreno.

Felipe de Almeida La Porta* (IC), Mohana Zorkot Carvalho (IC), Juliana de Oliveira Silva (IC) e Teodorico de Castro Ramalho (PQ).

felipe laporta@yahoo.com.br

Universidade Federal de Lavras, Departamento de Química, Caixa Postal 3037, Lavras - MG - 37200-000

Palavras Chave: pK_b, aminas, quimiometria, ácido-base.

Introdução

A produção crescente de bens de consumo e artigos descartáveis feitos com os mais variados tipos de polímeros resulta no descarte de milhões de toneladas de materiais cuja degradação natural poderá levar vários séculos. Estima-se, por exemplo, que para a completa degradação de pneus pela natureza são necessários cerca de 600 anos.1 Sendo que somente no Brasil são descartados anualmente 30 milhões de pneus velhos.² Os pneus são produtos obtidos a partir do processo de vulcanização da borracha e tem como polímero fundamental o poliisopreno.

Assim, o presente trabalho tem como objetivo a caracterização de um novo material adsorvente obtido a partir de resíduos de pneus utilizando para isso as técnicas de microscopia eletrônica de varredura e infravermelho. Tendo em vista que a transformação de resíduos ou rejeitos em materiais de importância tecnológica e com valor agregado desponta com uma alternativa bastante promissora para diversos resíduos.

Resultados e Discussão

Neste trabalho, o preparo desta resina constitui na sulfonação (20%) do poliisopreno. O poliisopreno utilizado foi recuperado a partir de 5 g do pó de pneu velho seguindo a metodologia desenvolvida pelo nosso grupo de pesquisa.

As análises espectroscopias na região do infravermelho de 4000-400 cm⁻¹ da resina (figura 1) indicaram a presença de bandas intensas em torno de 1050 cm⁻¹, características de grupos sulfônicos que foram gerados no material.

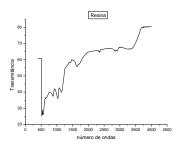
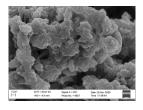
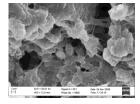




Figura 1. Espectro na região do infravermelho do

material.

A caracterização morfológica e estrutural dos poros gerados na obtenção da resina foi evidenciada por análise de microscopia eletrônica de varredura. A micrografia evidencia a porosidade após a modificação, conferindo elevada área superficial a resina (figura 2). A porosidade é uma característica muito importante no estudo de adsorção.

(a) (b)

Figura 2. Microscopia eletrônica de varredura dos materiais (a) pneu (b) resina.

Conclusões

Desta forma, podemos concluir que as resinas produzidas a partir de resíduos de pneu potenciais adsorventes mostraram-se para contaminantes no meio aquoso, podendo ser utilizado como fonte alternativa para a produção de materiais adsorventes de baixo custo.

Agradecimentos

FAPEMIG, CNPq e DQI-UFLA.

33ª Reunião Anual da Sociedade Brasileira de Química

¹ DO CARMO, D. M. Dissertação (Mestrado) Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, 2008.

²Disponível em http://www.cetsam.senai.br/bolsa acessado em 03 Ago.

³La Porta, F. A.; Silva, J.O. e Ramalho, T.C. Patente em processo de depósito junto ao INPI.