Aditivos à base de silicones usados como antiespumantes em petróleo

Assis K. da Fraga¹ (PG) *, Raquel Ferreira dos Santos¹ (TC) e Claudia R. E. Mansur¹ (PQ)

Palavras Chave: silicones, poliéteres, antiespumantes, petróleo

Introdução

No processo de separação petróleo/gás a formação de espuma, que pode ser causada pela presença de tensoativos ou impurezas no óleo cru, pode afetar a sua eficiência. Dentre os diversos métodos utilizados para o controle dos níveis de espuma no processo, está a adição de um agente químico (antiespumante) no petróleo [1].

O objetivo deste trabalho é avaliar a eficiência de diferentes amostras de silicone poliéter como agentes antiespumantes para petróleo por meio de teste desenvolvido em nosso laboratório de pesquisas.

Resultados e Discussão

Amostras de silicone poliéter foram utilizadas como aditivos antiespumantes para petróleo, sendo doadas pela Empresa Momentive Performance Materials. Estas foram denominadas como SP1, SP2 e SP3, de acordo com suas massas molares (1500, 2000 e 3000, respectivamente). A amostra SP2 possui um maior teor de poli(óxido de etileno) (PEO) em suas cadeias e nas amostras SP1 e SP3, a relação parte polar (PEO) com a parte apolar (silicone) foi semelhante.


A fim de se determinar a polaridade das amostras foram realizados testes de solubilidade em água [2]. Estes testes mostraram que somente a amostra SP2 foi solúvel na faixa de concentração avaliada (1 e 10%pv) e a faixa de temperatura de turvação observada com o aquecimento das soluções aquosas foi de 42 a 72°C. As amostras SP1 e SP3 apresentaram-se turvas em toda a faixa de concentração e temperatura avaliadas (1 e 10%p/v e 10 e 75°C), portanto, menos solúveis em água.

Os testes de eficiência como antiespumantes foram realizados em uma célula de pressão metálica onde foram adicionadas alíquotas de solução a 30%p/v de aditivo em tolueno no óleo cru. Os volumes destas alíquotas foram calculados de forma a obter uma concentração final do aditivo em 150 mL de petróleo de 30, 40 e 50 ppm.

A pressurização da célula foi realizada com a introdução de ar comprimido e o sistema foi aquecido, por cerca de uma hora, a 63°C em estufa

de rolamento. Ao final, o óleo é despressurizado em uma proveta até um volume padrão para que se inicie a contagem do tempo, medindo-se a queda da espuma pela variação de volume na proveta.

Os resultados obtidos são mostrados na Figura 1.

Figura 1. Testes de eficiência como antiespumantes para petróleo das amostras de silicone poliéter.

Os resultados mostram que a amostra mais polar (SP2) foi a que apresentou a melhor eficiência como antiespumante para petróleo. Na concentração de 30 ppm, esta amostra não quebrou a espuma formada no petróleo e na concentração de 40 ppm esta quebra foi bem observada. No caso dos aditivos SP1 e SP3, somente na concentração de 50 ppm é que foi possível observar uma eficiência como antiespumante para a amostra SP3.

Conclusões

A amostra de silicone poliéter mais polar (SP2) foi a mais eficiente na quebra da espuma formada no petróleo.

Por outro lado, a amostra de menor massa molar (SP1) não apresentou eficiência como aditivo antiespumante para a amostra de petróleo utilizada, apesar de possuir relação parte polar/parte apolar semelhante a da amostra SP3.

Agradecimentos

CNPq e CENPES/PETROBRAS.

¹ Universidade Federal do Rio de Janeiro – Instituto de Macromoléculas – Av. Horácio Macedo, 2030 – Ilha do Fundão, 21941-598, Rio de Janeiro, RJ, Brasil. E-mail: assiskoppe@ima.ufrj.br

¹ Shaban, Habib I.. Gas Sep. Purif. 1995,9,81.

² Mansur, C. R. E.; Barboza, S. P.; Gonzalez, G. e Lucas, E. F. *J. Colloid Interface Sci.* **2004**, *271*, 232.