Estudo teórico das reações de hidrólise de acetil haletos.

Gabriel Heerdt (PG)*, Nelson H. Morgon (PQ).*gabheerdt@iqm.unicamp.br

Universidade Estadual de Campinas, Campinas, SP; CEP 13083-970, Sala H-306. Palavras Chave: mecanismo de reação, haletos de ácidos orgânicos, G4(MP2).

Introdução

A compreensão dos mecanismos pelos quais ocorrem as reações químicas nem sempre é possível utilizando-se apenas dados experimentais. Com o avanço dos *hardwares* e *softwares* a química computacional passou a auxiliar e até indicar novos caminhos para os processos reacionais¹.

Os haletos de ácidos orgânicos são compostos derivados de ácidos carboxílicos, e são utilizados em larga escala em síntese orgânica devido a instabilidade e consequentemente alta reatividade².

O método composto G4(MP2)³ é o quarto de uma série de métodos Gx(MP2) para o cálculo de energias moleculares. É uma técnica mista em que uma seqüência de cálculos *ab initio* e DFT são realizados para se chegar a energia de alto nível de uma determinada espécie molecular.

Esse trabalho tem por objetivo realizar o estudo de mecanismos da hidrólise de acetil haletos com o método G4(MP2), comparando-se os dados obtidos com valores experimentais e assim podendo avaliar o desempenho do método.

Resultados e Discussão

Todos os cálculos foram realizados e o método G4(MP2) foi implementado no programa Gaussian03⁴.

Iniciamente foram otimizadas as geometrias dos produtos e reagentes, Fig. 1, com o método B3LYP/6-31G*, e então calculadas as energias com o método G4(MP2) dos mesmos.

$$R \xrightarrow{C} \bigoplus_{H} \bigoplus_{H} \bigoplus_{R \xrightarrow{C} \bigoplus_{H} \bigoplus_{H} \bigoplus_{H} \bigoplus_{R \xrightarrow{C} \bigoplus_{H} \bigoplus$$

Figura 1: Esquema para a reação em estudo.

Com as energias obtidas foi possível calcular a variação de entalpia para as reações. Na Tabela 1 são apresentados os valores obtidos comparando-os com valores experimentais.

Tabela 1: Valores de ΔH em kJ/mol para as reações de hidrólise.

_ filafolise.				
X	$\Delta H_{exp}^{}5}$	ΔH_{G2}^{5}	$\Delta H_{G4(MP2)}$	$\Delta H_{G4(MP2)}$ - ΔH_{exp}
F	-21,67	-21,85	-22,66	-0,99
С	-39,98	-38,13	-39,24	0,74
Bı	-	-	-42,48	-

Para obtenção da estrutura otimizada dos estados de transição será utilizado o método QST3, que irá partir com as geometrias otimizadas com o método B3LYP/6-31G* e uma estimativa da geometria do estado de transição. Após obtidas as estruturas otimizadas dos estados de transição serão realizados os cálculos com o método G4(MP2) e assim teremos o perfil da superfície de energia potencial.

Conclusões

Os resultados obtidos para variação de entalpia de reação a partir do método G4(MP2) forneceram desvios muito baixos quando comparados com o experimental, o que sugere que o método é adequado para tal estudo e portanto será utilizado nas etapas subseqüentes.

Agradecimentos

CAPES, CNPQ e FAPESP pelo financiamento e ao IQ/UNICAMP pela infra-estrutura

¹ Mariano, A.; Ventura, E.; Monte, S. A.; Braga, C. F.; Carvalho, A. B.; Araújo, R. C., *Quim. Nova*, **2008**, 31, 1243.

² Solomons, T. W. G., Química Orgânica, Editora LTC, 1982.

³ Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., *J. Chem. Phys.*, **2007**, *127*, *124105*.

⁴ GAUSSIAN – http://www.gaussian.com/

⁵ NIST WEBBASE - http://cccbdb.nist.gov/default/