Avaliação do potencial da farinha da casca da mexerica como biossorvente de metais pesados.

Camila S. Inagaki (IC), Talita O. C. Andrade (PG), Rení V. S. Alfaya (PQ) e Antonio A. S. Alfaya (PQ)* e-mail: alfaya@uel.br

Universidade Estadual de Londrina-UEL, Centro de Ciências Exatas, Departamento de Química, CP 6001, 86051-990, Londrina. Paraná.

Palavras Chave: casca de mexerica, adsorção, metais pesados, biossorvente.

Introdução

A contaminação de metais pesados provém de inúmeras indústrias como, mineradoras, têxtil, de galvanoplastia e baterias. A redução da poluição para níveis aceitáveis é necessária e urgente. Os processos de adsorção e troca iônica são os métodos mais utilizados e com maior eficiência em instalações industriais para o tratamento de efluentes. Entretanto, a aplicação de adsorventes sintéticos em larga escala tem sempre um problema de custos, pois são muito caros e de descarte final oneroso e impactante para o meio ambiente. Atualmente. muitos pesquisadores desenvolvendo adsorventes de resíduos da indústria e da agricultura para tornar o seu uso mais atraente aos administradores industriais¹. O Brasil produziu mais de 23 milhões de toneladas de mexerica em 2005 e grande parte desta produção foi dirigida para a produção de suco, geléias, doces e balas, com um descarte de grande quantidade de cascas para serem levadas aos lixões e aterros sanitários do país. O objetivo deste trabalho foi estudar as propriedades de adsorção da casca da mexerica, uma vez que não existem trabalhos da fruta da espécie nacional, Citrus nobilis.

Resultados e Discussão

As cascas foram adquiridas em supermercados da região de Londrina e Cornélio Procópio. A polpa foi retirada para a confecção de suco. As cascas foram lavadas com água, secas até peso constante, trituradas e peneiradas para se separar a faixa de 0,15-0,25 mm de tamanho de partícula. A farinha foi lavada com solução de HCl e seca novamente (FMeL). A microscopia eletrônica de varredura das partículas mostra que a lavagem com HCI transforma uma partícula compacta em uma partícula tipo "esponja", com uma perda de massa associada em torno de 50%. O FT-IR mostra bandas em 3411, 2932-2851 e 1745 cm⁻¹, as quais podem estar relacionadas aos grupos -OH, -CH₂-OH, -CH₂ e -C=O, da celulose e do ácido péctico, assim como de ácidos e ésteres. Os estudos de adsorção foram realizados pela técnica da batelada. As isotermas de tempo de contato, realizadas com 0,1 g de FMeL em 250 mL de solução de 1,0 x10⁻³ 33ª Reunião Anual da Sociedade Brasileira de Química

mol L⁻¹ dos íons metálicos, mostraram que o equilíbrio é atingido rapidamente (20 min). A análise da concentração dos íons metálicos em solução foi realizada por ICP.

A influência do pH da solução foi avaliada e se notou que para todos os casos o melhor pH para o processo de adsorção é pH 5,0. As isotermas de concentração para os íons metálicos em solução foram realizadas variando-se a concentração da solução de 5,0 x 10⁻⁶ a 1,0 x 10⁻² mol L⁻¹, com pH ajustado em 5,0 e com um tempo de contato de duas horas. Os dados experimentais foram tratados conforme os modelos de Langmuir e de Freundlich e os resultados são apresentados na Tabela abaixo. Os dados não se enquadraram no modelo matemático de Freundlich, apenas no de Langmuir.

Tabela 1. Parâmetros obtidos pelo modelo de Langmuir.

Íons	Qm (mg g ⁻¹)	b	R _L	R ²
Cu ²⁺		0,0019	0,0765	0,9999
Cd ²⁺	322,58	0,0038	0,0023	0,9997
Pb ²⁺	398,41	0,0297	0,0016	0,9993

O material FMeL foi testado quanto a sua durabilidade e desempenho. Verificou-se que após 75 ciclos de adsorção/dessorção em coluna o material apresenta apenas uma perda de 2,2% da capacidade de adsorção em relação ao primeiro ciclo.

Conclusões

A FMeL atinge o equilíbrio rapidamente (20 min.) e adsorve grandes quantidades de metais pesados, sendo que a ordem de adsorção é Pb>Cd>Cu em termos mássicos. Os dados experimentais de adsorção seguem o modelo matemático de Langmuir. O material biossorvente possui boas características de desempenho, mesmo após 75 ciclos de adsorção/dessorção.

Agradecimentos

Os autores agradecem o apoio financeiro da UEL, ao CNPq pela bolsa de iniciação da aluna C.S.I. e ao IAPAR pelas análises de ICP.

¹ Rocha, C. G.; Zaia, D. A. M.; Alfaya, R. V. S.; Alfaya, A. A. S. J. Hazard. Mater. 2009, 166, 383.