SÍNTESE DE O-GLICOSÍDEOS MEDIADA POR TeBra

Juliano C. R. Freitas*¹ (PG), Antônio A. S. Paulino¹ (IC), João R. de Freitas Filho² (PQ)

Paulo H. Menezes¹ (PQ)

julianocrufino@yahoo.com.br

Palavras Chave: Tetrabrometo de telúrio, O-Glicosídeos, Rearranjo de Ferrier.

Introdução

Os carboidratos são as macromoléculas mais abundantes na natureza, onde combinando as suas funções bioquímicas com as das proteínas, ácidos nucléicos e lipídios permitem a manutenção da vida dos organismos vivos. Neste contexto, os glicosídeos 2,3-insaturados, destacam-se por serem importantes intermediários na síntese de moléculas quimicamente ativas.

Neste trabalho, é descrito um método rápido e estereosseletivo para a síntese de glicais 2,3- insaturados a partir do rearranjo de Ferrier,³ utilizando o tetrabrometo de telúrio como ácido de Lewis.

Resultados e Discussão

Inicialmente, foi realizado um estudo da estereosseletividade versus a quantidade do catalisador, TeBr₄, para a síntese do glicosídeo 2,3-insaturado **2a**. Para isso foi utilizado o glucal **1** e o álcool propargílico (Tabela 1).

Tabela 1. Influência da quantidade de $TeBr_4$ na síntese dos glicosídeos 2,3-insaturados **2**.

1	0.5		
	0.5	89:11	90
3	0.3	91:9	91
4	0.1	93:7	92
5	0.05	87:13	92
6	0.01	50:50	60

^aProporção anomérica estabelecida por RMN ¹H e confirmada por cromatografia gasosa; ^bProduto isolado.

Na maioria dos casos, a reação de glicosidação apresentou elevados rendimentos e seletividades.

A metodologia foi então aplicada na síntese de outros glicais 2,3-insaturados a partir dos alcoóis correspondentes. Os compostos desejados foram obtidos de forma mais rápida e estereosseletiva quando comparados com outras metodologias descritas na literatura⁴ (Tabela 2).

+ ROH

	CH ₂ Cl ₂ 25°C	AcO''.	2	
ROH	Produtos	Temp	Proporção	Rend.
		o (h)	α:β	(%)
// ОН	Aco.,	0.25	88:12	86
ОН	OAc Aco	0.25	86:14	85
<i>i</i> -PrOH	AcoO	1.5	90:10	92
О Н	OAC ACOO	1.0	89:11	85

^aProporção anomérica estabelecida por RMN ¹H e confirmada por cromatografia gasosa; ^bProduto isolado.

Conclusões

A metodologia apresentou rendimentos elevados, e excelente seletividade para o anômero α na formação de vários de glicosídeos 2,3-insaturados. A aplicação da metodologia para a síntese de glicosídeos mais complexos encontra-se em andamento em nosso laboratório.

Agradecimentos

CNPq e CAPES.

¹Laboratório de Orgânica Aplicada, Departamento de Química Fundamental – CCEN – UFPE, Recife-PE.

²Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Garanhuns-PE.

¹ (a) Lehninger, A.L.; Nelson, D.; Cox, M.M. Princípios de bioquímica. Sarvier, São Paulo, 2002.

² (a) Kim, H.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 1336.

³ Ferrier, R. J.; Prasad, N. J. Chem. Soc. (c) 1969, 570.

⁴ (a) Freitas Filho, J. R.; et al. *Carbohydr. Res.* **2003**, *338*, 673. (b) Balamurugan, R.; Koppolu, S. R. *Tetrahedron* **2009**, *65*, 8139.