Desenvolvimento de um Sensor para p-Nitrofenol a base de um Complexo Supramolecular de FeTMPyP e FeTsPc sobre Nanotubos de Carbono de Paredes Múltiplas.

Saimon Moraes Silva (IC)*, Delton Martins Pimentel (IC)*, Artur Vicari Granato (IC), Flávio Santos Damos (PQ), Rita de Cássia Silva Luz (PQ), saimonmoraes@bol.com.br; deltonpimentel@gmail.com

Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, DEQUI, Diamantina, MG, Brasil

Palavras Chave: Sistemas supramoleculares.

Introdução

Dentre compostos os diversos orgânicos poluentes, o p-nitrofenol, substância amplamente utilizada nas indústrias em produção de pesticidas e corantes, deve ser destacado; uma vez que os processos convencionais de tratamento não são eficazes na sua degradação e mineralização [1] Por sua vez, os sistemas supramoleculares constituídos por compostos porfirínicos apresentam propriedades e aplicações que os tornam viáveis para o uso em inúmeras áreas. [1] Embora, os complexos supramoleculares a base de porfirinas e ftalocianinas apresentem alta eficiência catalítica sua imobilização torna-se mais eficiente sobre substratos com elevada capacidade de sorção [2]. Neste sentido, os nanotubos de carbono de parede múltipla (MWCNT), por apresentarem elevada área superficial bem como propriedades elétricas. excelentes empregados, neste trabalho, como suporte para imobilização do composto supramolecular.

Resultados e Discussão

A partir da titulação da tetra N-metil-porfirina de ferro (FeTMPyP) com fitalocianina tetra-sulfonada de ferro (FeTsPc) (Fig. 1) obteve-se o Diagrama de Job apresentado na Fig. 2. O Ele foi obtido a partir da equação:

F(x) = Aexp - (Epc-Ep)x - Ep (1).

Nesta equação x corresponde á fração molar da fitalocianina, Aexp equivale á absorbância medida após a adição de cada alíquota do titulante em um dado comprimento de onda, Epc e Ep são a absortividade molar da fitalocianina e da porfirina no comprimento de onda observado para Aexp.

Figura 1. Espectro da titulação de FeTMPyP com a FeTSPc.

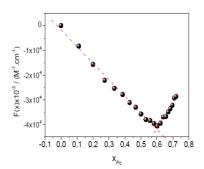


Figura 2. Diagrama de Job para titulação de FeTMPyP com FeTSPc. observando-se que o composto supramolecular sintetizado apresentou uma proporção estequiométrica de duas moléculas de FeTMPyP para três de FeTSPc.

A partir dos estudos eletroquímicos observou-se modificado eletrodo FeTMPyP/FeTsPc/MWCNT reduziu o potencial de -900mV para -600mV. O eletrodo modificado com FeTMPyP/FeTsPc/MWCNT apresentou coeficiente de transferência eletrônica (a) de 0,5 e uma constante de transferência eletrônica (ks) de 5 s⁻¹ (obtidos a partir do método de Laviron).

Conclusões

A partir das informações obtidas fica evidente que N-metil-4-piridil porfirina (FeTMPyP) e a ftalocianina tetra sulfonada de ferro (FeTsPc) formam um complexo supramolecular de FeTMPyP/FeTsPc esteguiometria Adicionalmente, complexo 0 supramolecular adsorvido sobre nanotubo de carbono de paredes múltiplas (MWCNT) apresentou alta atividade catalítica para a redução de p-nitrofenol o que pode ser evidenciado através da redução do potencial de pico em 300 mV vs Ag/AgCl. Os estudos de cinética eletródica também deixam evidente que o método de imobilização mantém as propriedades catalíticas complexo supramolecular.

Agradecimentos

FAPEMIG e CNPq.

- [1] Patnai, K.P., Khoury, J.N., Water Research, 38, 2004, 206 [2] Damos, F. S. Luz, R. C. S., Tanaka, A. A., Kubota, L. T., J. Electroanal. Chem. (DOI: In press http://dx.doi.org/10.1016/j.jelechem.2009.11.008).

33ª Reunião Anual da Sociedade Brasileira de Química