Investigação da Reação de Heck Intermolecular a partir de Adutos Morita-Baylis-Hillman. A Eficiência de Paladaciclos de Nájera como catalisadores na Síntese de α-benzil-β-ceto ésteres.

Bruno R. Vilachã Ferreira (PG), Rodrigo V. Pirovani (PG), Luis G. Souza-Filho (PG), Fernando Coelho* (PQ). rpirovani@igm.unicamp.br

Instituto de Química - UNICAMP - Depto. de Química Orgânica - C. Postal 6154 - 13084-971 - Campinas, SP Palavras Chave: Reação Morita-Baylis-Hillman, Reação Heck, Paladaciclos.

as últimas duas aperfeiçoamentos notáveis na química de Morita-

Baylis-Hillman (MBH) foram realizados no que se diz respeito à velocidade reacional e aplicações sintéticas dos adutos MBH.1 O método mais conveniente e simples para a preparação de adutos de MBH β-substituídos arilados vem ser o emprego da reação de Heck com haletos de arila mediada por paládio. Os paladaciclos derivados de oximas introduzidos por Nájera et al. são pré-catalisadores livres de fosfinas muito eficientes em variados processos de formação de ligação σ C-C.

Introdução

Resultados e Discussão

Nossa investigação se inicia com a preparação de uma série de adutos de MBH com diferentes substituintes, de acordo com o método estabelecido em nosso grupo de pesquisa (tabela 1).

O DABCO Ultrassom
$$R = A$$
 aril ou alquil $R_1 = Me$; Et 1-5

Tabela 1.Reação de MBH na presença de ultrassom

Entrada	Adutos de MBH	(%)
1	1, R= Fenil; R ₁ = OCH ₃	91
2	2 , R= 4-OMe-Ph; R₁= OEt	81
3	3, R= 3,5-difluoro-Ph; R_1 = OEt	94
4	4 , R= 3-Piridinil; $R_1 = OMe$	80
5	5, R= CH_2CH_3 ; R_1 = OEt	85

Tendo os adutos em mãos, avaliamos concentração do paladaciclo de Nájera, via CG, conforme a tabela 2.

Tabela 2. Avaliação da concentração do paladaciclo 1 em reações de Heck a partir de adutos MBH

intermolecular

Cond. Reacional **Entrada** Conversão (%) Paladaciclo (mol%) 7 h 15h 3 h 1 0.001 0 0 0 2 0.01 22 64 3 0.025 32 62 4 46 0.05 60 5 0.1 54 62 90 6 0.25 92 7 0.5 >98 8 0.75 85 q 1.0 76

Após averiguação da melhor condição reacional realizamos uma seguência de reações que nos permitiu a formação de α-benzil-β-ceto ésteres.

Entrada	Aduto	Cond. Reacional		Produto(%)
	MBH	ArX	Base	
1	1	PhI	Et ₃ N	6 , 81
2	2	PhI	Et_3N	7 , 95
3	3	PhBr	K_2CO_3	8 , 82
4	4	PhI	Et_3N	9, 70
5	5	PhI	Et_3N	10 , 87

Conclusões

Em resumo, evidenciamos um método direto e eficaz para a preparação seletiva de α-benzil-β-ceto ésteres. Nosso método é o primeiro exemplo de paladaciclos-oximas aplicação de catalisadores em arilação de Heck com adutos de MBH.3

Agradecimentos

FAPESP, CNPq, Capes e UNICAMP.

^{1.} Santos, L. S.; Pavam, C. H.; Almeida, W. P.; Coelho, F.; Eberlin, M. N. Angew. Chem. Int. Ed. 2004, 43, 4330.

^{2.} Alonso, D. A.; Nájera, C.; Pacheco, M. C. Adv. Synth. Catal. **2002**, 344, 172.

^{3.} Ferreira, B. R. V.; Pirovani, R. V.; Souza-Filho, L. G.; Coelho, F. manuscript in preparation.