Produção de carvão ativado a partir de borra de café para adsorção de fenol em meio aquoso.

Cínthia S. de Castro* (PG), Mário C. Guerreiro (PQ), Luiz Carlos A. de Oliveira (PG), Anelise Lima (IC), Karine Monteiro (IC).

guerreiro@ufla.br

Departamento de Química, Universidade Federal de Lavras, Caixa Postal 37, CEP 37200-000. Lavras-MG, Brasil.

Palavras Chave: carvão ativado, fenol, adsorção, borra de café.

Introdução

O fenol é um importante contaminante de efluentes gerados em diversas atividades industriais. Compostos fenólicos conferem gosto e odor desagradável às águas além de levar à produção compostos carcinogênicos (clorofenóis) no processo de cloração da água.1 Diferentes métodos de tratamento são utilizados na remoção de fenol de águas contaminadas e a adsorção em carvão ativado (CA) é o método mais utilizado.2 CAs são materiais carbonáceos caracterizados por possuir elevada área superficial e rica química de superfície, o que os torna capaz de adsorver uma grande diversidade de contaminantes. A escolha do precursor para a produção de CAs é uma etapa determinante do processo e a borra de café reúne diversas características desejáveis como: alto teor carbono, baixo teor de cinzas, homogeneidade e baixo custo.

Resultados e Discussão

Foram preparados CAs a partir da borra de café utilizando-se diferentes agentes ativantes: vapor d'água (CA H₂O), CO₂ (CA CO₂) e K₂CO₃ (CAK). A caracterização dos CAs mostrou a formação de materiais predominantemente microporosos, com elevada área superficial para o CAK (950 m² g⁻¹) seguido do CA H₂O (660 m² g⁻¹) e do CA CO₂ (230 m² g⁻¹). O resultado da análise elementar dos materiais é mostrado na Tabela 1:

Tabela 1. Análise elementar da borra de café e dos carvões ativados.

Materiais	C (%)	H (%)	N (%)
Borra de café	53	1,6	7,3
CAK	81	1,2	5,2
CA H ₂ O	59	0,8	0,8
CA CO ₂	71	1,6	1,6

Observa-se um aumento no teor de C e diminuição do teor de H dos CAs em relação à borra. Isso ocorre devido à liberação de compostos voláteis após o processo de pirólise e ativação.³ Dentre os CAs, verifica-se que o CAK foi o que apresentou maior teor de C (81%). Esses CAs foram então

testados quanto à capacidade de adsorção de fenol em meio aquoso (Figura 1):

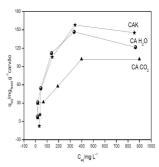


Figura 1. Adsorção de fenol nos carvões ativados.

As isotermas de adsorção foram ajustadas segundo modelo de Langmuir e mostraram elevada capacidade de adsorção de fenol para todos os CAs sendo que a maior remoção foi observada na presença do CAK.

Tabela 2. Parâmetros de Langmuir para adsorção de fenol nos CAs.

Materiais	q _{máx} (mg g ⁻¹)	K _L (L mg ⁻¹)	R ²
CAK	159	0,016	0,98
CA CO ₂	149	0,013	0,99
CA H₂O	119	0,008	0,97

Conclusões

A preparação de CA a partir da borra de café mostrou-se bastante satisfatória com a produção de CAs com elevada capacidade de adsorção de fenol.

Dentre os CAs preparados o CAK apresentou alta área superficial, elevado teor de C e a maior capacidade de adsorção de fenol.

Agradecimentos

Ao CNPq, CAPES, FAPEMIG e ao CAPQ-UFLA

¹ Britto, J.M.; Rangel, M. C. Química Nova, **2008**, *31*, 114.

² Guilarduci, V. V. S.; Mesquita, J. P.; Martelli, P. B.; Gorgulho, H. F. Química Nova, **2006**, *29*, 1226.

³ Bandosz, T. J. Activated carbon surfaces in environmental remediation. New York: Elsevier, **2006**. *7*, 571 p.

³²ª Reunião Anual da Sociedade Brasileira de Química