Síntese e caracterização de líquidos iônicos magnéticos

Flavia C. C. Oliveira (PG),¹ Anderson M. M. S. Medeiros (IC),^{*1} Renato F. Jardim (PQ),² Liane M. Rossi (PG),³ Joel C. Rubim (PQ).¹

¹Laboratório de Materiais e Combustíveis (LMC) do Instituto de Química da UnB.² Instituto de Física da USP. ³Instituto de Química da USP.

Palavras Chave: maguemita, líquidos iônicos magnéticos, BMIBF₄.

Introdução

Líquidos iônicos (LIs) derivados do cátion 1-nbutilimidazolium se apresentam líquidos mesmo em baixas temperaturas e tem se mostrado solventes adequados para estabilização de nanopartículas.¹ Desconhece-se na literatura a existência de dispersões estáveis de nanopartículas (NPs) magnéticas derivadas de ferritas em meio de LIs. Neste sentido, o objetivo deste trabalho é reportar a síntese e caracterização de dispersões estáveis de NPs de maguemita (MAG) em meio de 1-n-butil-3-metilimidazolium tetrafluoroborato de (BMIBF₄). As NPs de MAG foram obtidas pelo método da coprecipitação e ativadas por tratamento hidrotérmico com Fe(NO₃)₃ e HNO₃. Após centrifugação, a fase sólida foi dispersa em BMIBF₄. As NPs de MAG foram caracterizadas por TEM, difração de raios-X, espectroscopia Raman, DSC e por medidas de magnetização.

Figura 1: (a) Imagem TEM e (b) histograma da distribuição de tamanho de partícula da MAG.

Os resultados da Fig.1 mostram que as NPs de MAG apresentam um diâmetro médio de ca. 10,6 nm e os dados de raio-X dão um um diâmetro médio de 8,2 nm. A diferença entre os diâmetros obtidos pelas duas técnicas é atribuída ao fato de que a estrutura das NPs de MAG é composta por um núcleo de γ -Fe₂O₃ (cristalina), por uma camada externa de um óxido-hidróxido não estequiométrico protonado ([FeO_x(OH)_{3-2x}]H⁺, x<1 - não cristalino) e por uma camada intermediária de δ -FeOOH.² O espectro Raman resultante da diferença (Fig2c) entre o espectro Raman da dispersão (Fig.2b) de NPs de MAG em BMIBF₄ (30% m/m) e o espectro

32ª Reunião Anual da Sociedade Brasileira de Química

do BMIBF₄ (Fig.2a) apresenta as mesmas bandas Raman observadas no espectro Raman das NPs de MAG (Fig.2d).

Figura 2: Espectros Raman de: (a) BMIBF₄; (b) solução coloidal de BMIBF₄/NPs de MAG; (c) diferença (b) – (a); (d) NPs de MAG.

Os dados de DSC mostram que a transição vítrea do BMIBF₄ ($T_g = -86$ °C) praticamente não se altera na presença das NPs de MAG ($T_g = -84$ °C). As medidas de magnetização mostram um magnetização de saturação de 18 meu/g para a dispersão de NPs de MAG em BMIBF₄ a 30% m/m e que o LIM obtido apresenta propriedades superparamagnéticas.

Conclusões

NPs de MAG, positivamente carregadas formam dispersões estáveis em BMIBF₄. Estas dispersões são estáveis frente a agregação até concentrações de NPs de MAG de 30% m/m. O líquido iônico magnético apresenta comportamento superparamagnético.

Agradecimentos

CAPES e CNPq.

¹ Rubim, J. C.; Trindade, F. A.; Gelesky, M. A.; Aroca, R. F.; Dupont, J. *J. Phys. Chem. C* **2008**, *112*, 19670.

² Jacintho, G. V. M.; Corio, P.; Rubim, J. C. J. Electroanal. Chem. 2007, 603, 27.