Metalação direta de compostos aromáticos e heterocíclicos usando (TMP)₂Mg·2LiCl na presença de ZnCl₂

Bruno Veloni (IC)^[1], Felipe G. Abuin (IC)^[1], Zhibing Dong (PG)^[2], Andreas Unsinn^[2], Paul Knochel (PQ)^[2] Giuliano C. Clososki (PQ)^[1],

gclososki@fcfrp.usp.br

¹ Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo ²Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Alemanha

Palavras Chave: Amidas de magnésio, compostos organomagnésio, compostos organozinco.

Introdução

Recentemente, demonstramos que bases mistas de zinco e magnésio são ativas em reações de compostos metalação de aromáticos heterocíclicos. 1,2 Entretanto, o uso destas bases na desprotonação de alguns compostos aromáticos sensíveis levou a resultados insatisfatórios devido à alta reatividade dos intermediários de magnésio. Neste trabalho apresentamos um método direto de desprotonação de compostos aromáticos e heteroaromáticos sensíveis através do uso da base (TMP)₂Mg·2LiCl na presença de ZnCl₂. Após a reação com eletrófilos, os produtos funcionalizados são obtidos em altos rendimentos.

Resultados e Discussão

O tratamento da quinoxalina (2) com 0,55 equivalentes de $(TMP)_2Mg\cdot 2LiCl$ a 25 °C por 2 h seguido da adição de I_2 levou a apenas traços do composto desejado (3) enquanto o dímero 4 foi obtido majoritariamente. Por outro lado, na presença de $ZnCl_2$ (0,55 equiv.), o iodeto 3 foi obtido em 94% de rendimento (Figura 1).

Figura 1. Funcionalização da quinoxalina **(2)** com (TMP)₂Mg·2LiCl na presença e ausência de ZnCl₂.

A mesma metodologia pôde ser aplicada na metalação de vários compostos aromáticos e heterocíclicos à temperatura ambiente. Sob condições adequadas, a reação dos derivados organometálicos com vários eletrófilos levou a preparação de compostos aromáticos e 32ª Reunião Anual da Sociedade Brasileira de Química

heterocíclicos altamente funcionalizados e em altos rendimentos. Em alguns casos múltiplas funcionalizações foram efetuadas, mostrando a eficiência da metodologia (Figura 2).

$$CO_2Et$$
 CO_2Et
 CO_2E
 $CO_$

Figura 2. Alguns produtos obtidos usando-se o sistema ZnCl₂-(TMP)₂Mg·2LiCl seguido da reação com diferentes eletrófilos.

Conclusões

A metodologia desenvolvida apresenta grande utilidade sintética, pois permite a metalação a temperatura ambiente de substratos aromáticos e heterocíclicos bastante sensíveis. Os derivados organometálicos obtidos reagem com diversos eletrófilos levando a produção de compostos altamente funcionalizados.

Agradecimentos

Os autores agradecem ao CNPq e a *Alexander von Humboldt Foundation* (Alemanha) pelo suporte financeiro.

¹ Clososki, G.C.; Rohbogner, C.J.; Knochel, P. *Angew. Chemie, Int. Ed.*. **2007**, 46, 40, 7681.

² Rohbogner, C.J.; Clososki, G.C.; Knochel, P. Angew. Chemie, Int. Ed.. **2008**, 47, 8, 1503.