Avaliação do comportamento térmico do Hg em diferentes modificadores químicos visando à determinação direta em papel por SS-GF AAS

Patrícia S. M. Barbosa (PG)^{1*}, Cassiana S. Nomura (PQ)², Pedro Vitoriano Oliveira (PQ)¹

¹Instituto de Química, Universidade de São Paulo, C.P. 26077, CEP 05513-970, São Paulo, SP, Brasil
²Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, CEP 09210-170, Santo André, SP, Brasil
*patricia_smb@yahoo.com

Palavras Chave: absorção atômica, determinação direta, mercúrio, modificadores químicos

Introdução

usualmente técnica empregada determinação de Hg é absorção atômica com geração de vapor frio (CV AAS). Absorção atômica com forno de grafite (GF AAS) tem sido pouco utilizada devido à volatilidade do Hg e de seus compostos, dificultando a estabilização térmica do analito durante a secagem e pirólise, prejudicando sensibilidade, precisão e exatidão 1,2. As estratégias que tornaram viável o emprego da GF AAS na determinação de Hg são: (i) a utilização de agentes oxidantes para prevenir a redução do Hg^{II} pelo grafite antes da atomização³; e (ii) o uso de modificadores permanentes (Au, Ir, Pd, etc), depositados na superfície da plataforma ou do tubo de grafite, formando amálgamas estáveis com o Hg^{1,2,4}. Nesse contexto, o objetivo do presente trabalho consistiu em investigar modificadores guímicos para otimização programa de aquecimento visando à determinação direta de Hg em papel por espectrometria de absorção atômica com forno de grafite e amostragem direta de sólidos (SS-GF AAS).

Resultados e Discussão

O comportamento térmico do Hg (λ = 253,7 nm) foj avaliado em solução aquosa (250 μg L⁻¹ em 2% v v⁻¹ HNO₃) e em papel de filtro impregnado com esse elemento (concentração estimada 1,64 μg g⁻¹) na ausência e presença dos seguintes modificadores: (I) 3% m v $^{-1}$ KMnO $_4$; (II) mistura 1 mol L $^{-1}$ HNO $_3$ + 1 mol L⁻¹ H₂SO₄; (III) solução contendo 5 μg Pd + 3 μg Mg; (IV) 250 µg Pd depositado termicamente na plataforma de grafite; e (V) 250 μg de Pd depositado termicamente na plataforma e 1000 µg de Pd eletrodepositado na parede interna do tubo de grafite. Esses modificadores foram avaliados individualmente e combinados. No caso dos modificadores em solução foram adicionados 10 µL sobre a solução analítica de referência ou sobre o papel de filtro moído (massas pesadas de ~130 μg), previamente pesado sobre a plataforma do tipo "boat" dedicada ao GF AAS para análise direta de sólidos. O papel de filtro foi utilizado como matriz de referência para determinação de Hg em materiais com matrizes a base de celulose.

Os resultados obtidos para as temepraturas de pirólise e atomização nas diferentes condições estudadas estão apresentados nas Tabelas 1 e 2.

Tabela 1. Temperaturas de pirólise (T_p) , atomização (T_a) , tempo de pirólise (t_p) e de atomização (t_a) de Hg em solução aquosa na ausência e presença dos modificadores

Modificador	T _p	T _a	t _p (s)	t _a (s)
	(0)	(0)	(-/	(5)
Ausência	250	900	20	5
	250	1100	20	5
I + IV	300	1100	20	5
I + V	400	1200	20	7

Tabela 2. Temperaturas de pirólise (T_p) , atomização (T_a) , tempo de pirólise (t_p) e de atomização (t_a) de Hg em papel de filtro impregnado com Hg^{II} na ausência e presença dos modificadores

Modificador	Tp	Ta	t _p	t _a
	(°Ċ)	(°C)	(s)	(s)
Ausência	250	1300	20	5
I	300	1300	20	5
	300	1300	20	10
III	350	1800	20	5
I + IV	300	1200	20	5
I + V	300	1300	20	5
II + V	400	1300	20	10

Conclusões

Em geral todos os modificadores químicos utilizados aumentaram a estabilidade térmica do Hg. Porém, a mistura oxidante (HNO₃ + H₂SO₄) com a plataforma e parede interna do tubo modificadas com Pd (modificador combinado II + V) mostraram os melhores resultados na presença do papel de filtro impregnado com Hg. Além disso, nessa mistura oxidante promoveu condição a decomposição do papel (temperatura secagem/oxidação = 200 °C), minimizando o sinal de fundo durante a atomização.

Agradecimentos

¹Bulska, E.; Kandler, W.; Hulanicki, A. Spectrochimica Acta Part B, **1996**, 51, 1263.

²Moreno, R. G. M.; Oliveira, E. de; Pedrotti, J. J.; Oliveira, P. V. Spectrochimica Acta Part B, **2002**, *57*, 769.

³Maia, S. M.; Welz, B.; Ganzarolli, E.; Curtius, A. J. Spectrochimica Acta Part B, **2002**, *57*, 473.

⁴Silva, A. F. da; Welz, B.; Curtius, A. J. Spectrochimica Acta Part B, **2002**, 57, 2031.

FAPESP, CNPq, CAPES e IQ/USP