The Intramolecular Hydrogen Bond in Local Anesthetics Analogs A DFT Study

Giovanni F. Caramori (PQ), Erika Piccirillo (IC), Elba V. M. dos Santos (PG), Leandro de Rezende (TC), and Antonia T.-do Amaral* (PQ)

*atdamara@iq.usp.br

Departamento de Química Fundamental - Instituto de Química - USP

Palavras Chave: Procaine Analogs, Hydrogen Bond, DFT, Topological Analysis, Population Analysis, ELF, AIM.

Introduction

Local anesthetics (LA) are drugs used to prevent or reverse acute pain and treat symptoms of chronic pain. In terms of chemical structure, local anesthetics have three parts: a lipophilic (aromatic) end, a hydrophilic (amine), and a link between both ends containing either aminoester or aminoamide bonds¹. Sets of substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine, have been previously synthesized in our group and their lethal potencies determined. QSAR studies revealed that their toxicity (LD₅₀) is described mainly by a hydrophobic term. A small contribution of an electronic term was also observed ².

The lateral chain of this set of hydrochlorides leads to conformers that exhibit intramolecular hydrogen bonds, previously studied by us.³ The purpose of this theoretical study is to give a new insight on the N-H---O bonding situation of N,N-[(dimethylamino)ethyl] benzoate and benzamide hydrochlorides, providing information about the effect of substitution on the aromatic ring at *meta* and *para* positions (H (1), OCH₃ (2), Cl (3), NO₂ (4), N-(CH₃)₂ (5), and SO₂CH₃ (6)) for this set of compounds (Figure 1).

Figura 1. .Optimized structures of N,N-[(dimethylamino)ethyl] benzoate and benzamide hydrochlorides.

Results e Discussion

All calculations (geometry optimizations, stretching frequencies, relative energies, topological analyses (AIM and ELF), NBO, and NPA analyses) were performed in gas-phase by using B3LYP/6-311++G(d,p) level of theory. According to Table 1, the differences in the vibrational frequencies in relation to **1** show a similar pattern for both C=O and N-H stretching modes. The frequency associated to N-H (hydrogen bond donor) stretching is typically

32^ª Reunião Anual da Sociedade Brasileira de Química

red-shifted. For compounds 2 and 5 (*meta* or *para* substituted) this shift occurs due to N-H bond length increase, when compared with 1. The lowering of N-H stretching frequency is much more pronounced for *para*-substituted benzamides when compared with the corresponding benzoates *para*- or *meta*-substituted. On the other hand, improper blue-shifting hydrogen bonds (characterized by an increase of N-H stretching frequencies) are observed for 3, 4, and 6. Improper blue-shifts are more pronounced in *meta* than in *para* substituted derivatives. In addition, it is slightly more effective for benzamides than for benzoates.

Table 1. Harmonic vibrational frequencies values (cm⁻¹) of compounds **1-6**, including *meta* and *para*-substituted derivatives.^a

Comp.	meta		pa	para	
	C=O	N-H	C=O	N-H	
Benzoate					
1	1688	2955	1688	2955	
2	1687 (-1)	2944 (-11)	1678 (-10)	2882 (-73)	
3	1695 (7)	2988 (33)	1688 (0)	2963 (8)	
4	1703 (15)	3033 (78)	1703 (15)	3031 (76)	
5	1681 (-7)	2909 (-46)	1670 (-18)	2778 (-177)	
6	1698 (10)	3019 (64)	1698 (10)	3015 (60)	
Benzamide					
1	1658	2690	1658	2690	
2	1657 (-1)	2668 (-22)	1655 (-3)	2607 (-83)	
3	1660 (2)	2738 (48)	1655 (-3)	2712 (22)	
4	1668 (10)	2803 (113)	1669 (11)	2804 (114)	
5	1656 (-2)	2609 (-81)	1635 (-23)	2486 (-204)	
6	1661 (3)	2767 (77)	1662 (4)	2770 (80)	
a: The values in parentheses denict the differences in relation to 4					

a: The values in parentheses depict the differences in relation to 1.

Conclusions

In general, ligands containing electron donors substituents favour red-shifting hydrogen bonds, while electron withdrawing groups favour unusual hydrogen bonds.

Acknowledgements

FAPESP, CNPq and CAPES PROBRAL.

¹ Heavner, J. E. Curr. Opin. Anesthesiol. 2007, 20, 336.

² Amaral, A. T.-do et al.. Eur. J. Med. Chem. **1997**, 32, 433.

³ Amaral, A. T.-do *et al.*, "Shedding Light on the Intramolecular Hydrogen Bond of Procaine Analogs", 4th. *BrazMedChem* 2008, 168.