α-Fenil-selenoálcoois: Novos Agentes de Derivatização Quiral na Determinação do Excesso Enantiomérico por RMN de ⁷⁷Se

Jeiely Gomes Ferreira*(IC) e Simone Maria da Cruz Gonçalves(PQ)

jeielyferreir@hotmail.com

Departamento de Química Fundamental, UFPE, 50.670-901, Recife, Pernambuco, Brasil.

Palavras Chave: RMN-77 Se, excesso enantiomérico, ADQ.

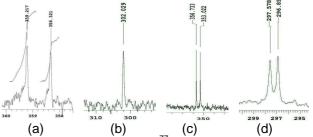
Introdução

O crescente interesse em sínteses assimétricas de substâncias biologicamente ativas requer metodologias práticas e precisas para determinação do percentual de excesso enantiomérico (%ee). A espectroscopia de ressonância magnética nuclear (RMN) vem se destacando como um método alternativo para a determinação do %ee, principalmente através da observação dos núcleos de ¹H, ¹³C e ¹⁹F. Resultados preliminares nossos, ² mostraram a possibilidade de aplicação da RMN de ⁷⁷Se para a determinação de %ee.

Neste trabalho estão descritos os resultados mais recentes da síntese de α-fenil-selenoálcoois substituídos e suas aplicações como agentes de derivatização quiral (ADQ) na análise do %ee de ácidos carboxílicos quirais através de RMN de ⁷⁷Se.

Resultados e Discussão

A metodologia empregada consistiu inicialmente na reação de diazotação de um aminoácido, seguido da reação *one pot*, com a adição de disseleneto de difenila e de borohidreto, que resultou na formação dos (*S*)-α-fenil-selenoálcoois correspondentes gerados *in situ*³ (Esquema1).


Esquema 1

Os experimentos de RMN de ⁷⁷Se foram realizados utilizando-se os α-fenil-selenoálcoois como ADQs e fazendo-os reagir com misturas racêmicas de ácidos carboxílicos no próprio tubo de RMN. Foi empregado o procedimento *MIX AND SHAKE* na presença de DCC como ativador, e DMAP como catalisador, que resultaram nos correspondentes ésteres diastereoméricos, seguindo-se da aquisição dos espectros de RMN de Se⁷⁷(Esquema 2).

$$\begin{array}{c|c} R & & & \\ \hline R' & & \\ \hline SePh & & & \\ \hline \end{array} \begin{array}{c} R' & & \\ \hline \\ R'' & & \\ \hline \\ CDCl_3 & & \\ \hline \\ R'' & & \\ \hline \\ SePh & \\ \hline \\ R'' & \\ \hline \\ SePh & \\ \hline \end{array}$$

Esquema 2

Os melhores resultados obtidos foram para os casos em que $R=PhCH_2$, $R'=CH_3$, R''=Br (Figura 1a) e $R=PhCH_2$, $R'=CH_3$, R''=Ph (Figura 1c) onde foram observadas as anisocronias dos sinais no espectro de ^{77}Se de 51Hz e 211Hz, respectivamente.

Figura 1: Espectro de RMN-⁷⁷Se(CDCl₃, 57 MHz) para – (a) ésteres diastereoméricos com R=PhCH₂, R'=CH₃ e R"=Br; (b) ésteres diastereoméricos com R=(CH₃)₂CH, R'=CH₃ e R"=Ph; (d) R=(CH₃)₂CH, R'=CH₃ e R"=Ph.

Conclusões

Os resultados obtidos nos experimentos de RMN
77 Se realizados demonstram que a presença de
sistemas aromáticos na estrutura química do ADQ
tende a aumentar a separação dos sinais de selênio
no espectro, permitindo, através da integração dos
sinais, uma determinação mais acurada do %ee. A
metodologia empregada possui a vantagem
adicional da reação de esterificação diastereomérica
poder ser realizada no próprio tubo de RMN.

Agradecimentos

CNPq, PIBIC/UFPE/CNPq

¹ Parker, D.; Chem. Rev. 1991. 91. 1441-1457.

² II Encontro sobre Selênio e Telúrio.

³ Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. **1973**, 95, 6137.