Utilização do complexo [Ru(c-ph-tpy)₂]²⁺ como fotossensibilizador em Células Solares Sensibilizadas por Corante

Juliano A. Bonacin (PQ)*, André L. A. Parussulo (PG), Manuel F. G. Huila (PG), Koiti Araki (PQ) e Henrique E. Toma (PQ). *jbonacin@iq.usp.br

Instituto de Química, Universidade de São Paulo - USP, CEP 05508-900, São Paulo-SP, Brasil.

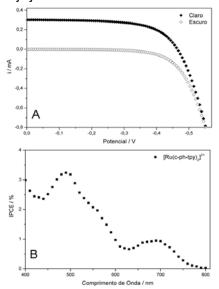
Palavras Chave: rutênio, terpiridina, células solares.

Introdução

Complexos polipiridínicos de íons metálicos d⁶ mostram intensas bandas de transferência de carga metal-ligante (MLCT) na região do visível, com potencial interesse para promover processos de injeção de carga para a banda de condução de semicondutores como: TiO₂, SnO₂ e ZnO. As energias dos estados MLCT podem ser alteradas sistematicamente pela modificação dos ligantes de ancoragem, bem como pela troca nos ligantes auxiliares e seus substituintes^{1,2}.

A taxa de conversão luz-eletricidade mostra-se mais eficiente por complexos polipiridínicos de Ru²⁺ combinados com TiO₂ em Células de Grätzel. O objetivo desse trabalho é apresentar as propriedades do complexo fotossensibilizador: [Ru(c-ph-tpy)₂]²⁺. Em que c-ph-tpy é a 4'-(4-carboxi)fenil-2,2':6',2"-terpiridina.

Resultados e Discussão


O complexo foi sintetizado pela reação 2:1 c-phtpy: $RuCl_3$ nH_2O em metanol e refluxo por 3 h. Apresenta um processo ($Ru^{2+/3+}$) em +0,93 V (EPH) e E_{pc1} =-1,12 V (redução da primeira c-ph-tpy) e E_{pc2} =-1,34 V, (redução da segunda c-ph-tpy).

Os espectros eletrônicos dos filmes de $[Ru(c-phtpy)_2]^{2^+}$ e do $[Ru(c-bipy)_2(NCS)_2]$ (N3), corante utilizado para comparação estão mostrados na Figura 1. Os espectros de materiais sólidos apresentam as bandas mais alargadas, devidas aos acoplamentos entre as moléculas próximas, e acoplamentos vibrônicos.

Figura 1. Espectro eletrônico. dos filmes de TiO₂ modificado com o N3 (•) e TiO₂ modificado com o complexo [Ru(c-ph-tpy)₂]²⁺ (o).

As curvas I x V estão apresentada na Figura 2 A e é possível observar a corrente de curto circuito com um valor de 302 μA e potencial de circuito aberto de -0,55 V. Na Figura 2 B encontra-se a curva IPCE do complexo e observa-se um máximo de fotoconversão de 3,5 % próximo a 500 nm. É possível que outros níveis energéticos de menor energia do complexo [Ru(c-ph-tpy)₂]²⁺ estejam promovendo recombinação no momento da injeção ou estado excitado não é estável suficiente para uma alta injeção elétrons no semi-condutor.

Figura 2. A) Curva I x V do complexo $[Ru(c-ph-tpy)_2]^{2+}$ na presença e na ausência de fonte de luz, P=100 W m⁻². B) Curva IPCE do composto $[Ru(c-ph-tpy)_2]^{2+}$.

Conclusões

Estes resultados mostram que embora o ligante c-ph-terpy seja um π -aceptor, apresenta uma curva de IPCE com valores maiores do que os observados por complexos análogos como por exemplo o [Ru(c-ph-tpy)(meS-tpy)]²⁺.

Agradecimentos

Aos autores agradecem a FAPESP e ao CNPq.

¹Sugihara, H.; Singh, L. P.; Sayama, K.; Arakawa, H.; Nazeeruddin, M. K.; Grätzel, M.; *Chem. Lett.* **1998**, 1005.

²Yanagida, M.; Islam, A.; Tachibana, Y.; Fujihashi, G.; Katoh, R.; Sugihara, H.; Arakawa, H.; *New J. Chem.* **2002**, *8*, 963.