Nanopartículas de polissacarídeos via complexação polieletrolítica: Síntese e caracterização

José Guilherme Veras Neto¹ (IC) *, Marília de A. Oliveira¹ (PG), Érico de Moura Neto (PG)¹, Jeanny S. Maciel (PQ¹), Judith P. A. Feitosa (PQ)¹, Haroldo C. B. Paula (PQ)² Regina C. M. de Paula (PQ)¹

*jguilhermev@yahoo.com.br

¹Universidade Federal do Ceará, Departamento de Química Orgânica e Inorgânica, CEP 60.451-970, ²Universidade Federal do Ceará, Departamento de Química Analítica e Físico-Química, CEP: 60.455-760, Fortaleza – CE, Brasil.

Palavras Chave: Polissacarídeo, complexos polieletrolíticos, nanopartículas, goma cajueiro sulfatada.

Introdução

Uma das rotas mais recentes de preparação de nanopartículas tem sido pela interação de dois polieletrólitos de cargas opostas em solução aquosa por complexação polieletrolítica (CPE)1. Devido à formados biocompatibilidade complexos polissacarídeos têm muitas aplicações medicinais. A modificação da goma do cajueiro (GC) por reação sulfatação (GS) introduz grupamentos carregados SO₃ que aumentam as interações com a quitosana (Qt)2 . A complexação polieletrolítica pode ser representada na forma:

R-SO₃ H⁺ + CH₃COO NH₃ + R → R-SO₃ NH₃ + R O objetivo deste trabalho é sintetizar nanopartículas de goma do cajueiro sulfatada e quitosana. Os efeitos da razão molar de cargas e da ordem de adição dos polieletrólitos no tamanho das nanopartículas foram investigados.

Resultados e Discussão

Os CPEs foram preparados com soluções 0,25% de Qt, GC e GS em diferentes razões de cargas e variando a ordem de adição.

A Figura 1 mostra a variação do tamanho em função da razão das cargas, bem como o efeito da sulfatação da goma do cajueiro e da ordem de adição. de quitosana a goma do cajueiro e cajueiro sulfatada (QtGC e QtGS respectivamente) e pela adição de GC e GS a quitosana (GCQt e GSQt respectivamente).

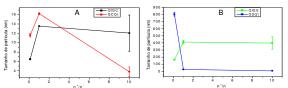


Figura 1. Efeito da razão das cargas na formação dos CPEs de A) QtGC; GCQt; B) QtGS e GSQt

Os CPEs na razão n⁺/n 1 apresentaram maior tamanho de partícula devido ao balanço estequiométrico entre as cargas dos polissacarídeos, possibilitando maior interação entre os grupamentos carregados dos monômeros. A

única exceção foi o CPE de GSQt que apresentou o maior tamanho na razão 0,1. CPE de dextrana sulfata e quitosana apresentaram tamanhos de partículas variando de 160 a 550 nm²

Os CPEs de QtGS apresentaram tamanhos de partícula bem maiores que os de QtGC. Essa diferença é atribuída a presença de uma maior quantidade de carga na goma sulfatada (grau de substituição 0,88) quando comparada GC que apresenta apenas 5% de carga proveniente do ácido urônico³. A ordem de adição dos CPEs de GCQt em ralação a QtGC levou a formação de partículas menores. O mesmo efeito ocorreu para as razões 1 e 10 de GSQt.

A Figura 2 apresenta o potencial de polidispersão (PDI) para os complexos.

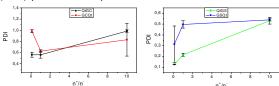


Figura 2. PDI para CPEs de A) QtGC B) QtGS.

O PDI é inversamente proporcional ao tamanho de partícula, indicando que a produção de partículas maiores favorece a formação CPEs com característica unimodal.

Conclusões

Nanopartículas envolvendo Qt, GC e GS foram obtidas via complexação polieletrolítica. Partículas maiores foram obtidas na razão n+/n- 1. A sulfatação na goma do cajueiro favoreceu a formação de nanopartículas maiores e a ordem de adição afeta o tamanho destas.

Agradecimentos

CNPq, UFC e rede Nanoglicobiotec.

¹Liu, H.; Chen, B.; Mao, Z. W. e Gao, C. Y. J. Appl. Polym. Sci. 2007, 106, 4248.

Schatz, C., Domard, A., Viton, C., Pichot, C.; Delair, T. Biomacromolecules, 2004, 5, 1882.

³de Paula, R. C. M.; Heatley, F. e Budd P. M. *Polym. Int.* **1998**, 45, 27.