Determinação de contaminantes inorgânicos e orgânicos de baixo PM em álcool combustível por Eletroforese Capilar

Thiago Nogueira (PG)*, Thiago G. dos Santos (IC) e Claudimir L. do Lago (PQ) nthiago@iq.usp.br

Instituto de Química, Universidade de São Paulo, Av.Prof. Lineu Prestes, 748, CEP: 05508-900, São Paulo-SP Palavras Chave: Ácidos orgânicos, Aldeídos, Biocombustível, Qualidade.

Introdução

A utilização de combustíveis alternativos tem sido proposta como um método de melhorar a qualidade do ar urbano, diminuindo as emissões de gases causadores do efeito estufa, bem como minimizar a dependência de Petróleo. O uso de combustíveis oxigenados, como metanol e etanol podem levar a uma diminuição global de COx, NOx, SO₂ e as emissões de hidrocarbonetos¹.

A ANP estabelece como limites para os contaminantes no álcool combustível: cloreto, sulfato e sódio; 1, 4 e 2 mg/kg, respectivamente. No entanto, outras espécies de interesse. principalmente do ponto de vista ambiental, por se tratarem de espécies precursoras de muitas reações na atmosfera, destaca-se a presença de compostos orgânicos de baixo PM, tais como o formaldeído, acetaldeído, os ácidos acético e fórmico e acetona. Neste trabalho é descrito a aplicação determinação eletroforese capilar para de contaminantes inorgânicos e orgânicos de baixo PM no etanol combustível.

Resultados e Discussão

Todas as análises foram realizadas utilizando um equipamento de eletroforese capilar com detecção condutométrica sem contato (CE-C⁴D) construído em nosso laboratório². As amostras foram apenas diluídas em água deionizada (1:1), evitando a perda do material orgânico pela evaporação, como descrito previamente por Munoz *et al*³. Para a separação dos aldeídos, foi empregado a derivatização utilizando bissulfito de sódio (1 mM).

A figura 1 apresenta a separação dos ânions inorgânicos, orgânicos e aldeídos em amostras de etanol combustível. A tabela 1 ilustra os limites de detecção e quantificação obtidos.

Tabela 1: Valores dos Limites de Detecção e Quantificação instrumental e do método.

motramental e de metedo.					
Analito	LD	LD	LQ	LQ	LQ
	μmol	mg L⁻¹	μmol	mg L ⁻¹	mg
	L ⁻¹		L ⁻¹		kg ^{-1¥}
Cloreto	0,6	0,02	2	0,07	0,14
Nitrato	0,6	0,04	2	0,12	0,25
Sulfato	0,6	0,06	2	0,19	0,38
Formiato	1,5	0,07	5	0,23	0,45
Acetato	1,5	0,09	5	0,30	0,59
Formaldeído	1,5	0.04	5	0,12	0,25
Acetaldeído	30,3	1.3	100	4,4	8,8

^{*}LQ do método, considerando diluição 1:1.

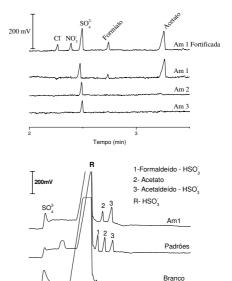


Figura 1: Separação dos ânions utilizando tampão 20 mM ácido 2-N-morfolinoetanosulfônico (MES)/Histidina 6 0,1 mM hidróxido de cetil-tri-metilamônio (CTAH), pH 6,0, -25kV.

Tempo (min)

Conclusões

O emprego da CE-C⁴D para análises rotineiras de etanol combustível mostra-se bastante promissora, uma vez que é possível a determinação de espécies de diferentes classes químicas utilizando uma única condição de separação.

Os LQs obtidos mostram-se suficientemente baixos para atender as especificações da ANP para cloreto e sulfato. Como preparo das amostras foi necessário apenas a diluição, e os resultados de recuperação obtidos para todas as espécies foram próximos de 100%, indicando a ausência de interferências causadas pela matriz orgânica.

Adicionalmente, o emprego da CE para determinação de aldeídos apresenta grande vantagem sobre os métodos cromatográficos, uma vez que dispensa a utilização de reagentes derivatizantes contendo hidrazinas, assim como de solventes orgânicos.

¹ Bishop, G. A.; Stedman, D. H., *Environmental Science & Technology* **1990**, 24, (6), 843-847.

² da Silva, J. A. F.; do Lago, C. L., *Analytical Chemistry* **1998**, 70, (20), 4339-4343.

³ Munoz, R. A. A.; Richter, E. M.; de Jesus, D. P.; do Lago, C. L.; Angnes, L., *Journal of the Brazilian Chemical Society* **2004**, 15, (4), 523-526.