Estudo da potencialidade dos difenilfosfinatos de lantânio dopados com Ce³⁺ para aplicação em protetores solares.

Michel L. de Souza (IC)¹, Elizabeth B. Stucchi (PQ)¹, Marian R. Davolos (PQ)¹, Juliana F. de Lima (IC)².

¹Departamento de Química Geral e Inorgânica – Instituto de Química – UNESP – Rua Francisco Degni, s/nº - Quitandinha – CEP 14801-970 – Araraguara-SP.

²Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - Av. Bandeirantes, 3.900 Monte Alegre - CEP: 14040-900- Ribeirão Preto – SP.

Palavras Chave: Protetor Solar, Cério, Difenilfosfinato.

Introdução

Das radiações provenientes do sol, a ultravioleta (UV) é a mais preocupante quando pensamos em proteção solar. Subdivide-se em três regiões: UVA (320-400nm), UVB (280-320nm) e UVC (200-280nm)¹. A obtenção dos filtros solares é dirigida de tal forma a otimizar a quantidade de radiação ultravioleta espalhada e absorvida. Para isso é extremamente importante controlar o tamanho de partícula do filtro, uma vez que se for muito pequeno pode penetrar na pele, e se for grande (>200 nm) pode provocar o efeito esbranguiçado, o que é indesejado esteticamente.

Os complexos foram sintetizados por precipitação e síntese hidrotérmica. Na precipitação, feita a partir das soluções etanólicas $LnCl_3$ (Ln: La e Ce) e acido difenilfosfínico (HDFF), os complexos foram dopados com Ce³⁺ em diferentes concentrações: 3%, 4%, 5% e 10%, sendo que os dopados com 10% em mol de Ce³⁺ foram precipitados em 3 diferentes temperaturas: 25°C, 40°C e 78°C. Foi feita a precipitação também a partir de 3 diferentes precursores: KDFF, NH₄DFF e La_{0,90}Ce_{0,10}(OH)CO₃.H₂O (LaCeHC). A síntese hidrotérmica foi realizada reagindo-se o precursor LaCeHC com solução etanólica de HDFF.

Resultados e Discussão

Os espectros de IV de todos os complexos obtidos mostram bandas de estiramento C-H do anel aromático em aproximadamente 3050 cm⁻¹ e de deformação angular próximo de 688 e 736 cm⁻¹. Por volta de 1434 e 1590 cm⁻¹ existem bandas pouco intensas e finas referentes ao estiramento C-C do anel aromático. Em 1140 e 1040 cm⁻¹ existem bandas referentes aos estiramentos simétricos e assimétricos da ligação P-O. E próximo de 440 cm⁻¹ são observadas bandas referentes à deformação angular da ligação 0-P-0. Nota-se 0 desaparecimento das bandas características do HDFF em 1681 e 962cm⁻¹ referentes ao vP-O-H e δP -O-H respectivamente.

Os difratogramas de raios X (DRX) obtidos para todas as amostras dopadas mostram que os valores das distâncias interplanares concordam com as obtidas por SCARPARI². Os complexos dopados são isomórficos quando comparados com o composto puro e os picos de difração se ajustam ao *32ª Reunião Anual da Sociedade Brasileira de Química*

sistema cristalino triclínico possuindo uma fórmula molecular por cela unitária.

As fotomicrografias obtidas por MEV dos complexos obtidos por precipitação mostram tamanhos de partículas próximos de 0,25 μ m, exceto os obtidos a partir dos sais KDFF e NH₄DFF e pela síntese hidrotérmica (> 250 nm).

Nos espectros de absorção (Fig.1) de todos os complexos, existem bandas em 320 nm referentes às transições f→d do íon Ce³⁺ e em 280 nm referentes às transições $\pi \rightarrow \pi$ dos anéis aromáticos pertencentes ao ligante. A intensidade da absorção referente ao Ce³⁺ aumenta com o aumento da concentração desse íon.

Figura 1 – Espectros de absorção dos complexos sintetizados por precipitação: a) La_{0.87}Ce_{0.00}(DFF)₃, b) La_{0.87}Ce_{0.00}(DFF)₃, c) La_{0.87}Ce_{0.00}(DFF)₃, d) La_{0.87}Ce_{0.00}(DFF)₃(precipitado a partir do NEDF)₆) La_{0.87}Ce_{0.01}(DFF)₃(precipitado a partir do La_{0.87}Ce_{0.01}(DFF)₃(Drecipitado a partir do La_{0.87}Ce_{0.01}(DFF)₃(Drecipitado a partir do NEDF)₆) partir do NEDF₃(DCe_{3.01}(DFF)₃(Drecipitado a partir do NEDF)₆) partir do NEDF₃(DCe_{3.01}(DFF)₃(Drecipitado a partir do La_{0.87}Ce_{0.01}(DFF)₃(Drecipitado a partir do NEDF)₆) partir do NEDF₃(DCE)₃(DFF)₃(Drecipitado a partir do NEDF)₆) partir do NEDF₃(DFF)₃(Drecipitado a partir do NEDF)₆) partir do NEDF₃(DFF)₃(DFF)₃(Drecipitado a partir do NEDF)₆) partir do NEDF₃(DFF)₃

Através do método Rancimat® observou-se que o complexo não exibe atividade foto oxidativa frente ao óleo de rícino.

Conclusões

Foi possível a síntese dos complexos com as diferentes porcentagens de dopante. O tamanho das partículas é adequado para os complexos obtidos por precipitação. O complexo possui absorção em uma ampla faixa na região do ultravioleta, o que o torna interessante para aplicação nas formulações de protetores solares.

Agradecimentos

FAPESP, Laboratório de Terras Raras- FFCLRP

¹ DE PAOLA, M.V.RV. Princípios de formulação de protetores solares. Cosmetic & Toiletries. V.13, set-out (2001), p.74-82, **2001**.

² SCARPARI, S.L. Luminescência e aspectos estruturais de

difenilfosfinatos de alguns íons lantanídeos. 2001, 90f. Tese (Doutorado em Química) - Instituto de Química, UNESP, Araraquara-SP, **2001**.