Propriedades catalíticas do óxido de vanádio suportado em alumina para a síntese do estireno

Sirlene Barbosa Lima¹(PG), Rosenira Serpa da Cruz²(PQ)^{*}, Maria do Carmo Rangel¹(PQ)

Palavras Chave: vanádio, alumina, etilbenzeno

Introdução

O estireno é um intermediário químico amplamente utilizado na indústria petroquímica [1]. Comercialmente é produzido pela desidrogenação do etilbenzeno sobre catalisadores baseados em óxido de ferro promovidos com potássio e cério [2]. Porém, esses sólidos apresentam uma vida útil limitada devido à perda de potássio, além de desativar com o coque formado na reação [1]. Neste contexto, estudou-se o desempenho catalítico do óxido de vanádio suportado em alumina preparado pelo método sol-gel, usando-se acetilacetonato de vanádio III e secbutóxido de alumínio III em 2butanol, como precursores. Os géis foram secos a 120 °C, e calcinados a 500 °C, por 5 h. Foram obtidos os catalisadores AV2S, AV5S, com razões molares Al/V = 2, 5 respectivamente. As amostras foram caracterizadas por difração de raios X, medida da área superficial específica, redução termoprogramada e avaliadas na desidrogenação do etilbenzeno em ausência de vapor d'água.

Resultados e Discussão

Os difratogramas de raios X dos catalisadores foram similares àqueles do suporte. Apenas a amostra com o mais alto teor de vanádio (AV2S) apresentou difratograma com picos característicos do V₂O₅. Durante a avaliação catalítica esta amostra apresentou mudança na sua estrutura, passando de V₂O₅ a V₂O₃. A alumina apresentou um valor de área superficial específica típico da gama-alumina, e a adição de vanádio provocou diferentes alterações nesse parâmetro. Durante a avaliação catalítica, os sólidos apresentaram perda na área superficial específica, como mostrado na Tabela 1. Os perfis de TPR das amostras mostraram a presença de apenas um pico, enquanto que o V₂O₅ puro apresentou uma curva de redução com três picos; indicando que a alumina inibiu a redução das espécies V⁴⁺ para V³⁺. O pico observado pode ser atribuído à redução de espécies V^{5+} a V^{4+} , que aparece deslocado para temperaturas mais baixas em relação ao V₂O₅, indicando que a alumina favorece esse processo. Este efeito variou de modo 32ª Reunião Anual da Sociedade Brasileira de Química

irregular com o teor de vanádio nos sólidos e foi mais intenso na amostra com o teor mais alto de vanádio indicando que, neste sólido, o vanádio está em interação mais forte com o suporte.

Os catalisadores foram ativos na desidrogenação do etilbenzeno e seletivos a estireno (Tabela 2). A adição de pequenas quantidades de vanádio aumentou a atividade do catalisador, em relação à alumina pura. Foram observados efeitos distintos em relação ao teor de vanádio sobre a atividade dos sólidos, devido às diferentes interações do vanádio com o suporte.

Tabela 1. Propriedades texturais dos catalisadores.

Amostras	Sg(m²/g)	Sg*(m²/g)	
Al ₂ O ₃	264	335	
V_2O_5	2,0	21	
AV2S	54	46	
AV5S	430	224	

^{*} Área superficial específica após avaliação catalítica

Tabela 2. Conversão do etilbenzeno (CEB), seletividade (Ssty) e rendimento (Rsty) a estireno sobre os catalisadores obtidos, após 7 h de reação.

Amostras	CEB (%)	S _{Sty} (%)	R _{Sty} (%)
Al ₂ O ₃	9,0	55	5,0
V ₂ O ₅	18	54	9,7
AV2S	26	74	19
AV5S	48	86	41

Conclusões

Catalisadores baseados em vanádio, preparados pelos métodos sol-gel são ativos na desidrogenação do etilbenzeno em ausência de vapor d'água. O catalisador contendo o teor mais baixo de vanádio (AV5S) é o mais promissor para produzir estireno.

Agradecimentos

FAPESB – Fundação de Amparo à Pesquisa do Estado da Bahia

¹Departamento de Físico-Quimica, GECCAT - Grupo de Estudos em Cinética e Catálise, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, CEP 40170-290, Salvador, Bahia, Brasil. sirlenebl@ufba.br, mcarmov@ufba.br

²Departamento de Ciência Exatas e Tecnológicas, Grupo Bioenergia e Meio Ambiente, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, CEP 45662-000, Ilhéus, Bahia, Brasil. roserpa@uesc.br

¹. Garry R. M.; Govind, P.M. Applied Catalysis, 2001, 212, 239.

² Shuwei, C.; Zhangfeng Q.; Xiufeng. X.; Jianguo, W. Applied Catalysis, 2006, 203, 185.