Assinalamento dos Sinais de RMN de Dois Precursores Sintéticos de Compostos Tipo-Gaiola (*Cage-Like*)

Valdemar Lacerda Jr.^{1*} (PQ), Roberta C. Salles¹ (PG), Ronaldo Scarpate¹ (IC), Adilson Beatriz² (PQ), Felicia M. Ito² (PG), Reginaldo B. dos Santos¹ (PQ), Sandro J. Greco¹ (PQ), Eustáquio V. R. de Castro¹ (PQ) *e-mail=vljunior@cce.ufes.br

¹Departamento de Química-CCE-UFES-Brasil; ²Departamento de Química-CCET-UFMS-Brasil

Palavras Chave: RMN, cage-like, assinalamento

Introdução

Os compostos policíclicos (*cage-like*) tem atraído atenção de vários grupos de pesquisa desde 1930, devido ao seu aspecto peculiar e suas atividades biológicas. O potencial biológico desses compostos só foi descoberto em 1964 por Davies,¹ com a atividade antiviral da amantadina. Mais tarde, em 1969 os estudos de Schwab² mostraram que a amantadina também é benéfica para pacientes com doença de Parkinson.

Um fator determinante no estudo destes compostos é o conhecimento correto de sua estrutura, já que podem interagir de maneira altamente específica receptores biológicos. Outro com aspecto importante é que as estruturas destes compostos não são simples e um problema encontrado na análise dos dados de RMN, é a sobreposição de seus sinais, o que dificulta uma atribuição inequívoca dos sinais de RMN de ¹H e ¹³C, não sendo encontrado um estudo detalhado deste tipo na literatura. Este trabalho tem por objetivo usar diferentes técnicas de RMN unidimensional e bidimensional, no intuito de realizar uma atribuição inequívoca dos sinais de RMN de ¹H e ¹³C dos compostos 3 e 4, Esquema 1, que são precursores sintéticos dos compostos tipo gaiola 5 e 6.

Resultados e Discussão

Os compostos em estudo, 3 e 4, apresentados na rota sintética do Esquema 1, foram sintetizados pelo grupo de pesquisa do Professor Adilson Beatriz-UFMS, a partir de uma reação de Diels-Alder entre o ciclopentadieno e a *p*-benzoquinona gerando o aduto 2.

Esquema 1. Rota sintética dos compostos cage-like.

Na atribuição inequívoca dos sinais de RMN dos compostos 3 e 4 foram analisados os espectros de

32ª Reunião Anual da Sociedade Brasileira de Química

RMN 1D de ¹H, ¹³C{¹H}, DEPT-135 e 2D COSY HSQC, HMBC e NOESY. As principais atribuições se encontram na Tabela 1.

Tabela 1. Deslocamentos quími	icos de 'H e '	'°C,δ(p	pm).
-------------------------------	----------------	---------	------

Composto (3)		Composto (4)		
С	δ(¹³ C)	δ(¹ H)	δ(¹³ C)	δ(¹H)
2	51,8	3,17	51,3	2,76
7	51,8	3,17	45,6	2,79
9	136,5	6,13	135,1	6,11
10	136,5	6,13	136,4	6,03
11	48,7	H ₁₁ - 1,31	49,8	H ₁₁ - 1,25
		H _{11'} - 1,43		H _{11'} - 1,31

O sinal de $H_{11'}$ do aduto **3** foi atribuído com maior deslocamento químico por se encontrar em um cone de desblindagem. A distinção entre os sinais de H_1 e H_2 foi feita com base na análise dos espectros 2D de COSY e HMBC. As atribuições dos hidrogênios em 4 e 5 foram feitas pela análise do espectro 2D de HSQC, onde H_4 e H_5 (2,59 ppm) e $H_{4'}$ e $H_{5'}$ (2,26 ppm) são periplanares.

No espectro de RMN ¹H do composto **4** a distinção entre os hidrogênios $H_2 e H_7$ foi realizada com base na análise do espectro de RMN 2D de COSY. A partir dessas atribuições foi possível atribuir os sinais dos carbonos $C_9 e C_{10}$, pelo HMBC, e em seguida dos hidrogênios $H_9 e H_{10}$. A partir do espectro de NOESY foi possível confirmar os sinais dos hidrogênios em ponte ($H_{11} e H_{11'}$), onde $H_{11'}$ possui uma maior frequencia de absorção.

Conclusões

Os precursores sintéticos dos compostos *cage-like* foram obtidos e analisados por RMN. A atribuição dos sinais de RMN ¹H e RMN ¹³C tiveram como suporte os experimentos 1D (RMN ¹H, RMN ¹³C{¹H} e DEPT-135) e os experimentos 2D (COSY, HMBC, HSQC e NOESY), o que permitiu o assinalamento inequívoco dos sinais.

Agradecimentos

FAPES/FUNCITEC, PPGQUI-UFES, FUNDECT-MS, CNPq, CAPES e LabPetro-DQUI/UFES.

¹ Davies, W. L.; Grunert R. R.; Haff R. F.; McGahen J. W.; Neumayer E. M.; Paulshock M.; *Science* **1964**, *144*, 862–863.

² Schwab R. S.; England A. C.; Poskanzer D. C.; Young R. R. *J Am Med Assoc* **1969**, *208*, 1168–1170.