Efeito do Uso de Conjuntos de Bases no Cálculo das Propriedades Magnéticas δ e J do Epóxido de Verbenona

Valdemar Lacerda Jr. 1* (PQ), Livia D. R. Murari. (IC), Luiz. H. K. Queiroz Jr. (PG), Reginaldo B. dos Santos (PQ), Sandro J. Greco (PQ) e Eustáquio V. R. de Castro *e-mail=vljunior@cce.ufes.br

Laboratório de Pesquisas em Química Orgânica, Depto. de Química-CCE/UFES, Av.Fernando Ferrari, 514, Vitória, ES

Palavras Chave: RMN, cálculos teóricos, conjunto de bases

Introdução

A química computacional nos últimos anos tem se ferramenta importante tornado uma determinação da estereoquímica e atribuição inequívoca dos sinais de RMN de compostos orgânicos, através dos cálculos de tensores de blindagem de RMN, constantes de acoplamento spin-spin e posterior correlação entre dados teóricos e experimentais. Em estudos anteriores, o epóxido da verbenona (Figura 1) foi submetido à cálculos de tensores de blindagem de RMN e constantes de acoplamento spin-spin, utlizando modelo B3LYP/cc-pVTZ, sendo que os dados teóricos gerados foram comparados com os experimentais, o que permitiu uma atribuição inequívoca dos sinais de RMN de ¹H e ¹³C e da estereoquímica relativa.

Figura 1. Epóxido de verbenona (1)

No entanto, sabe-se que os resultados dos cálculos teóricos estão diretamente ligados, tanto ao método teórico, quanto ao conjunto de bases utilizado no experimento computacional, sendo que na maioria dos casos, o uso de modelos teóricos com nível de teoria mais elevado está associado também a um maior custo computacional. Neste sentido, o presente trabalho tem como objetivo avaliar o uso de um conjunto de bases aumentada (aug-cc-pVTZ) nos cálculos das propriedades magnéticas δ e J do epóxido de verbenona (1) e principalmente verificar o custo benefício do resultado obtido quando comparado ao resultado em cc-pVTZ².

Resultados e Discussão

As estruturas *cis* e *trans* do epóxido de verbenona (1) foram otimizadas no programa Gaussian 03, usando o método MP2 e o conjunto de bases cc-pVDZ, sendo incluído o efeito do solvente (clorofórmio), com o modelo PCM. Para os cálculos das propriedades magnéticas δ e *J* foram utilizados os modelos B3LYP/aug-cc-pVTZ, sendo o efeito do solvente considerado apenas para (δ). Para efeito de comparação foram utilizados os resultados anteriores² na base cc-pVTZ. Os resultados obtidos foram comparados com os dados experimentais com auxílio de métodos estatísticos e dispostos em tabelas e gráficos. Os resultados obtidos para os

dados de RMN de ¹H, com efeito do solvente, estão dispostos na Tabela 1.

Tabela 1. Desvios padrão (SD) e desvios médios (MD) de δ de RMN ¹H (ppm) calculado, com efeito do solvente e experimentais

Modelo	SD* (Δδ**) - trans	SD* (Δδ**) – <i>cis</i>	MD*** (Δδ**) - trans	MD** (Δδ**) – <i>cis</i>
B3LYP/cc- pVTZ	0,04	0,13	0,07	0,26
B3LYP/aug- cc-pVTZ	0,04	0,22	0,05	0,30

^{*} Desvio Padrão, ** $\Delta\delta = |\delta_{Teor.} - \delta_{Expt.}|$

Constatou-se que o modelo teórico B3LYP/aug-cc-pVTZ apresentou desvios médios e padrão satisfatórios de δ de RMN de 1 H (Tabela 1). Já os resultados obtidos para os tensores de blindagem de RMN de 13 C não forneceram resultados melhores que quando é utilizada a base cc-pVTZ. Verificou-se também que o tempo de cálculo foi maior utilizando-se o modelo B3LYP/aug-cc-pVTZ comparado com o tempo gasto no modelo B3LYP/cc-pVTZ, elevando assim o custo computacional.

Conclusões

modelo teórico B3LYP/aug-cc-pVTZ apresentou eficaz nos cálculos de tensores de blindagem (deslocamentos químicos, constantes de acoplamentos spin-spin (J). Esse modelo, assim como o modelo B3LYP/cc-pVTZ, utilizado em estudos anteriores confirma a estereoquímica trans para o epóxido de verbenona, e levam a uma atribuição inequívoca dos sinais de Contudo, o modelo B3LYP/aug-cc-pVTZ apresenta um custo computacional elevado quando comparado ao modelo teórico B3LYP/cc-pVTZ e uma ligeira melhora para RMN de ¹H. Com isso, verifica-se que para o epóxido de verbenona, o modelo teórico B3LYP/cc-pVTZ apresenta bons resultados associado а um menor computacional.

Agradecimentos

FAPES/FUNCITEC, CNPq, CAPES, PPGQUI-UFES e LabPetro-DQUI/UFES.

¹Oliveira, K. T.; Lacerda Jr., V.; Constantino, M. G.; Donate, P. M.; da Silva, G. V. J.; Brocksom, T. J.; Frederico, D. *Spectrochim. Acta Part A* **2006**, *63*, 709.

² Lacerda Jr., V.; Queiroz Jr., L. H. K.; da Silva, G. V. J.; dos Santos, R. B.; Murari, L. D. R.; Scarpate, R. 31st RASBQ, Resumos, Tr 40, 2008.

³Gaussian 03 Revision C.02, Gaussian, Inc., Wallingford CT, **2004**.

^{***}MD= Desvio médio $(\Sigma\Delta\delta)/n$, $n = n.^{\circ}$ de medidas)