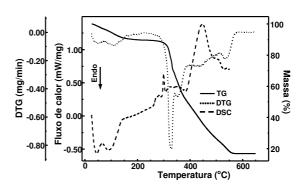
Estudo termoanalítico do sal de cobre (II) do ácido 4,4'-dicarboxi-2,2'-biquinolina

Carina Cleia Pessotto¹* (IC), Elder Moscardini Filho² (IC), Horácio Dorigan Moya³ (PQ), Jivaldo Rosário Matos⁴ (PQ) <u>*carina.cleia@gmail.com</u>

¹Faculdade de Ciências Farmacêuticas e Bioquímicas – Faculdades Oswaldo Cruz; ²Departamento de Ciências Exatas e da Terra – DCET - UNIFESP; ³Faculdade de Medicina da Fundação do ABC - CEPES; ⁴Instituto de Química - USP

Palavras Chave: BCA, Cu(II), DSC, TG/DTG,.


Introdução

4,4'-dicarboxi-2,2'-biquinolina ácido (BCA). C₂₀H₁₂N₂O₄, é um dicarboxílico derivado da quinolina. Apresenta baixa solubilidade em água até pH 4, porém acima de pH 7 é totalmente solúvel. Comercialmente, é encontrado na forma dos sais de Na+ ou K+. O BCA não forma complexos solúveis com Cu(II), nem com a maioria dos cátions metálicos, mas forma um complexo solúvel, vermelho-violeta, com Cu(I)¹. Em estudo recente para a determinação espectrofotométrica por FIA de taninos em amostras de vinhos¹ verificou-se que ao ser utilizada a água como carregador, em vez de NH₄OH, ocorria a formação de um precipitado verde claro de Cu(II)/BCA. Visto que não encontrados relatos na literatura sobre esse precipitado, o presente trabalho tem como objetivo a síntese e a caracterização dessa espécie

Resultados e Discussão

O precipitado Cu(II)/BCA foi obtido pela reação direta entre Cu(ClO₄)₂ e Na₂BCA, em meio aquoso. Após filtração e secagem, o produto caracterizado por análise elementar (AE), análise térmica [termogravimetria (TG), termogravimetria derivada (DTG) е calorimetria exploratória diferencial (DSC)] е espectroscopia infravermelho (IV). As curvas TG/DTG foram obtidas sob atmosfera dinâmica de ar e as curvas DSC sob atmosfera dinâmica de N2. A associação dos resultados de AE e TG/DTG (Tab. 1) sugerem a fórmula mínima CuBCA.2,5H2O. O espectro no IV evidencia bandas de absorção características da molécula de água confirmando a formação da espécie hidratada, e deslocamento das bandas de absorção do grupo carboxilato para menor número de onda, em relação ao ácido livre, devido à interação desse grupo ao cátion metálico. As curvas TG/DTG (Fig. 1) evidenciaram duas regiões distintas de perda de massa até 600ºC. A primeira, entre 25 e 200°C, corresponde as etapas de desidratação (T_{pico DTG} = 52 e 110°C). A segunda região corresponde à decomposição térmica da espécie anidra (T_{pico DTG} = 327, 349, 440 e 537°C). O produto final é de coloração negra e corresponde a curva DSC evidenciou endotérmicos para a etapa de desidratação (T_{pico} =

45 e 89° C; $\Delta H = 225$ J/g). Para a etapa de decomposição térmica a curva DSC evidenciou um evento endotérmico ($T_{pico} = 383^{\circ}$ C) e vários exotérmicos ($T_{pico} = 275$, 299 e 446°C).

Fig. 1. Curvas TG/DTG e DSC da amostra CuBCA.2,5H₂O obtidas a 10°C/min.

Tab. 1. Resultados de AE (%CHN) e TG (% H_2O e % Cu^0 no resíduo de CuO isolado a 600°C) do produto CuBCA.2,5 H_2O

%	AE			TG	
	% C	% H	% N	%H₂O	%Cu
Calc.	53,0	3,8	6,2	9,9	14,0
Ехр.	52,5	3,6	5,8	10,3	13,4

Conclusões

A associação dos resultados de AE, IV, TG/DTG e DSC confirma a formação da nova espécie. As curvas TG/DTG e DSC evidenciaram que a decomposição térmica da espécie anidra só ocorre acima de 270°C. Posteriormente, a partir da caracterização dos possíveis intermediários, a etapa de decomposição térmica será estudada mais detalhadamente.

Agradecimentos

FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) e CEPES (Centro de Estudos, Pesquisa, Prevenção e Tratamento em Saúde) da FMABC, CNPq e CAPES.

Gershuns, A.L., Verezubova, A.A. e Tolstykh, Zh. Photocolorimetric determination of copper with 2, 2'-bicinchoninic acid. 1961. *Khimiya i Khimicheskaya Tekhnologiya*, 4 (1), 25-27.
Moya, H. D., Dantoni, P., Rocha, F. R. P. e Coichev, N. *Microchemical Journal.* 2008, 88, 21-5.