
Determinação de constantes de acidez de derivados da fluoresceína por métodos quimiométricos e efeitos de substituintes

Franciane Dutra de Souza¹ (IC), Diogo Silva Pellosi¹ (IC), Vagner Roberto Batistela² (PQ), leda Spacino Scarmínio³ (PQ), Hueder Paulo Moisés de Oliveira¹ (PQ), Vagner Roberto de Souza¹ (PQ), Noboru Hioka^{1*} (PQ)

Palavras Chave: fluoresceína, pKa, quimiometria...

Introdução

A Fluoresceína (FSC) e seus derivados são amplamente compostos corantes utilizados industrialmente e cientificamente, no entanto esses apresentam alta dependência com o pH em virtude de possuírem diversos grupamentos ácido-base levando diferentes espécies protolíticas. а Evidentemente essas espécies exibem propriedades físico-químicas características, o que torna a determinação exata de pKa fundamental. Os derivados avaliados foram a eosina Y (EOS), rosa de bengala B (RBB), a tetranitrofluoresceína (TNF), a eritrosina (ERI), o éster etílico da eosina (EOSET) e a acridina-fluoresceína (N-FSC), Figura 1.

	W	X	Υ	Z
FSC	Ι	Ι	0	Н
EOS	Ι	Br	0	Н
RBB	Н	I	0	CI
TNF	Н	NO ₂	0	Н
ERI	Н	I	0	Н
EOSET	Et	Br	0	Н
N-FSC	Н	Н	N	Н

Figura 1. Estrutura da FSC e derivados.

Resultados e Discussão

Obtiveram-se os espectros de absorção UV-Vis em meio aquoso, a 30,0 °C. O conjunto de espectros mostra ausência de ponto isobéstico e alta sobreposição de bandas, sugerindo que o sistema protolítico destes compostos é complexo.

Para determinações confiáveis aplicou-se os métodos quimiométricos¹ (método Q de Imbrie, rotaçao varimax e projeçao oblíqua de Imbrie) a cada sistema, Tabela 1.

Os corantes apresentam três pKas (pKa_{fenol1} se refere a um equilíbrio tautomérico). Para um próton fenólico o pKa típico² é em torno de 10. A presença de substituintes retiradores de densidade eletrônica na parte xantênica (tricíclica) da FSC acarreta em grande diminuição dos pKa_{fenol1} e pKa_{fenol2}. Alguns dos valores de pKa_{fenol1} encontram-se em regiões 32ª Reunião Anual da Sociedade Brasileira de Química

muito ácidas (não calculados). A presença dos grupos em \mathbf{X} : Br, I e NO $_2$ aumenta fortemente a acidez do pKa $_{\text{fenol}2}$ (comparação pela FSC), efeito acentuado na TNF devido ao maior efeito retirador do grupo NO $_2$.

Tabela 1. pKa em meio aquoso, a 30,0 $^{\circ}$ C e força iônica 0,1 mol.L⁻¹. * pKaN = 5,6.

	pKa _{fenol1}	рКа _{соон}	pKa _{fenol2}	
N-FSC [*]	2,8	3,9	6,2	
FSC	2,5	3,8	6,1	
EOS	< 0	3,8	2,0	
EOSET	< 0	ausente	1,9	
ERI	< 0	2,3	3,8	
RBB	< 0	1,9	3,9	
TNF	< 0	2,5	0,4	

Na FSC e derivados, os valores de pKa_{COOH} iguais ou menores que 3,8, mostram aumento de acidez em relação ao ácido benzóico (pKa = $4,2 \text{ ref}^2$) devido a presença da parte xantênica.

A atribuição inequívoca dos pKas da EOS somente foi esclarecida pela comparação com a EOSET. Na EOS e TNF, os valores de pKa $_{\text{COOH}}$ são maiores que os de pKa $_{\text{fenol2}}$ (inverso nos outros derivados) devido a elevada eletronegatividade dos grupos Br e NO $_{\text{2}}$. O Ka $_{\text{COOH}}$ é influenciado por grupos volumosos (I e NO $_{\text{2}}$) na parte xantênica, apesar da ortogonalidade entre este anel e o benzênico.

Conclusões

As metodologias quimiométricas permitiram caracterizar os sistemas protolíticos mesmo onde os valores de pKa são muito próximos entre si. A presença de halogênios e do grupo nitro na parte xantênica diminuem os três pKas.

Agradecimentos

CNPq, Seti/Fundação Araucária-Pr.

¹ Universidade Estadual de Maringá – Departamento de Química. *nhioka@uem.br

² Universidade Estadual de Maringá – Centro de Tecnologia. Campus Regional de Umuarama.

³ Universidade Estadual de Londrina – Departamento de Química

¹ Scarmínio, I. S.; Ishikawa, D. N.; Barreto, W. J.; Paczkowski, E. L.e Arruda, I. C. *Quim. Nova* **1998**, *21*(*5*), 590; Sena, M. M.; Scarmínio, I. S.; Collins, K. E. e Collins, C., H. *Talanta* **2000**, *53*, 453.

S.; Collins, K. E. e Collins, C., H. *Talanta* **2000**, *53*, 453.
² *CRC Handbook of Physics and Chemistry*. 85^a ed., CRC Press, New York, **2005**.