Novo complexo polinuclear de ferro e hexahidroxitrifenileno: Síntese e propriedades eletrônicas.

Karine P. Naidek* (IC), Herbert Winnischofer(PQ).

Universidade Federal do Paraná, Setor de Ciências Exatas, Departamento de Química, Jd. das Américas - Centro Politécnico, Curitiba - PR - Brasil - CEP 81.531-990. e-mail: karinenaidek@yahoo.com.br

Palavras Chave: trinuclear, hidroxitrifenileno, ferro.

Introdução

Compostos da série dos dioxilenos vêm sendo foco de estudos da caracterização da distribuição interna de cargas^[1]. Nos complexos metálicos gerados existe uma elevada sobreposição dos orbitais de caráter metálico e dos ligantes¹¹, o que dificulta a interpretação dos fenômenos, principalmente em complexos de metais da primeira série de transição. No presente trabalho nós focamos a síntese do ligante hexaidroxitrifenileno (Fig.1) a partir da condensação de catecol na presença de FeCl₃. O objetivo é gerar o complexo planar trinuclear (Fe₃HOT), o qual deve exibir propriedades interessantes a serem explorados em interfaces e dispositivos^[2]. O produto foi caracterizado pelas técnicas de FTIR, Raman e UV-vis. Cálculos de modelagem molecular nível semi-empírico foram realizados para auxiliar nas interpretações.

Figura 01: Estrutura idealizada do hexaidroxitrifenileno.

Resultados e Discussão

Fe₃HOT foi sintetizado condensação do catecol na presença de ácido sulfúrico 70% e cloreto de ferro(III) por 24 horas a 25ºC[3]. O produto formado de cor azul escuro foi separado por filtração, lavado com água destilada em abundância para remover o excesso de FeCl₃ e seco sob vácuo. O espectro de FTIR do composto sintetizado foi equivalente ao do ligante livre, com picos na região entre 1300 a 1000 cm⁻¹ associados aos modos C-H no plano e fora do plano e entre 1300 e 1600 cm⁻¹ associados aos estiramentos C=C dos anéis aromáticos. Foram observadas apenas alterações significativas na região de 1600 a 1800 cm⁻¹, região de picos associados aos modos de vibração C-O. Este resultado é coerente com a biscoordenação de íons ferro. No espectro Raman foram observados picos atribuídos aos modos C-H, C-C-O e C=C. Nesse caso foi observado um pico em 325 cm⁻¹ referente à um modo vibracional M-O. Diferentemente do descrito na literatura, foi observado que o composto é solúvel nos solventes tetrahidrofurano (THF), dimetilsulfóxido (DMSO) e dimetilformamida (DMF), gerando soluções de diferentes colorações: roxa, azul e violeta. respectivamente. Os espectros eletrônicos registrados nesses solventes apresentam bandas bastante intensas na região do ultravioleta e de baixa intensidade no visível. Para auxiliar na atribuição foi realizado um cálculo PM3 com interação entre configurações. O espectro teórico gerado exibiu um conjunto de 9 bandas no UV envolvendo transições π - π *. A partir do espectro teórico foram realizadas decomposições dos espectros experimentais em THF, DMSO e DMF. Foi verificado a dependência dos máximos dessas bandas em função de parâmetros de basicidade de Lewis (D.N.), polarizabilidade e polaridade desses solventes. Foi observado em todos os casos a mesma tendência da influência do solvente nas energias de transição, indicando forte interação do meio sobre a distribuição de cargas no complexo Fe₃HOT.

Conclusões

Os resultados de até o momento indicam sucesso na obtenção do composto Fe₃HOT. As análises feitas dos resultados de espectroscopia UV-vis mostram uma forte influência do solvente sobre a distribuição de carga no composto. Os resultados obtidos até o momento serão de grande importância para a compreensão das propriedades desse material em interfaces e em dispositivos que consistirão as próximas etapas do presente trabalho.

Agradecimentos

Pibic/CNPq, CNPq e Fundação Araucária.

¹ Barthram, A. M.; Reeves, Z. R.; Jeffery, J. C. e Ward, M. D. *J. Chem. Soc.-Dalton Trans.*, **2000**, 3162-3169.

² Winnischofer, H.; Toma, H.E. e Araki, K. *Journal of Nanoscience and Nanotecnology*, **6,2006**,1701-1709.

³ Naarmann, H.; Hanack, M. e Mattmer, R. *Synthesis-Stuttgart*, **1994**,477-478.