Reaproveitamento de Óxidos de Manganês de Pilhas Descartadas para Eletrocatálise da Reação de Redução de Oxigênio em Meio Básico

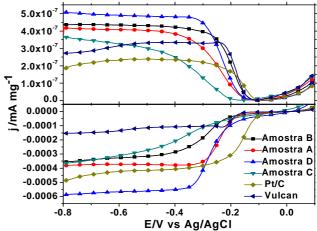
Daniel C. Rascio¹ (IC), Rodrigo F. B. Souza¹ (PG), Érico T. Neto¹ (PQ), Marcelo L. Calegaro² (PQ), Hugo B. Sufredini¹ (PQ), Mauro C. Santos¹ (PQ)*.

*daniel.rascio@ufabc.edu.br

- 1 Laboratório de Eletroquímica e Materiais Nanoestruturados Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, CEP 09.210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brasil.
- 2 Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13566-590 São Carlos, SP, Brasil.

Palavras Chave: óxidos de manganês, redução de oxigênio, reaproveitamento de pilhas.

Introdução


Para o funcionamento de uma célula à combustível é fundamental a presença de eletrocatalisadores, cujas propriedades determinam a eficiência com que ocorrem as reações, como a de redução do oxigênio. Para a RRO muitos estudos apontam como bons eletrocatalisadores os óxidos de Mn [1], um material comum na fabricação de pilhas alcalinas. No Brasil são produzidas 3 milhões de pilhas alcalinas por ano [2], que podem fornecer a matéria prima necessária para a produção de bons eletrocatalisadores para a RRO, diminuindo o custo final dos dispositivos e poupando o meio ambiente dos impactos causados pelo seu descarte indevido.

O foco deste trabalho foi o desenvolvimento de diferentes técnicas para obtenção de óxidos de Mn para a eletrocatálise da RRO. Os óxidos de Mn foram extraídos de uma pilha descartada e em 4 amostras para separados tratamentos. A amostra A foi misturada à uma solução de NaOH 5 mol L⁻¹ com 5% de H₂O₂ sob agitação durante 30 minutos, filtrada e lavada. A amostra B foi submetida à mesma técnica, porém utilização de reagentes comuns diminuição do custo de produção. No lugar de NaOH foi utilizada soda cáustica e para substituir o H₂O₂ foi utilizada água oxigenada 40 volumes. A amostra C foi submetida à fusão com KHSO₄ [3]. A solução foi adicionada de carbono Vulcan e H2O2 durante 30 minutos, filtrada e lavada. A amostra D foi mantida como referência e não sofreu nenhum tratamento.

Resultados e Discussão

Os testes de DRX apresentaram padrões típicos para MnO_2 , mas com a presença de outras fases [4]. Porém a amostra A obteve predominantemente MnO_2 e as amostras B e C apresentaram em maior parte Mn_3O_4 . O tamanho médio de cristalito calculado foi de 14 nm, típico para óxidos de Mn [4].

As curvas voltamétricas apresentaram picos de oxidação e redução típicos de óxidos de Mn [4].

Figura 1. Curvas de polarização em estado estacionário em NaOH 1 Mol L^{-1} : (a) corrente do anel e (b) corrente no disco. $\varpi = 1600$ rpm. A curva de Pt/C foi inclusa para comparação. Potencial do anel = 0,15 V.

As curvas de polarização são apresentadas na Figura 1 e comparadas à Pt/C para referência. Pode-se observar melhor desempenho obtido pela amostra B, com potencial de redução de O_2 em 0,12 V e menor densidade de corrente no anel, evidenciando menor formação de peróxido (redução direto para água, transferência de 4 elétrons).

Conclusões

As técnicas empregadas foram capazes de produzir óxidos com boa atividade eletrocatalítica para RRO e tamanhos de partícula bastante reduzidos a partir de material reaproveitado, destacando-se a amostra preparada com reagentes de baixo custo.

Agradecimentos

À FAPESP processo 05/59992-6, CAPES e UFABC.

¹ Calegaro, M. L.; Lima, F. H. B. e Ticianelli, E. A.; J. Power Sources 2006, 158, 735.

² http://abinee.org.br, acessada em Dezembro de 2008.

³ Paulino, J. F.; Busnardo, N. G. e Afonso, J. C.; Quimica Nova 2007,

⁴ Lima, F. H. B.; Calegaro, M. L.; Ticianelli e E. A.; Electrochim. Acta 2007, 52, 3732.