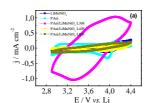
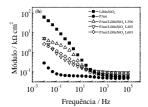
Desempenho eletroquímico de compósitos de polianilina e óxidos de níquel-manganês litiados dispersos em surfactantes (EO/PO)

Sheila C. Canobre (PQ) *, Rafael Oliveira (IC), Fábio A. Amaral (PQ), Carla Polo Fonseca (PQ), Silmara Neves (PQ).

LCAM – Laboratório de Caracterização e Aplicação de Materiais – Universidade São Francisco, Itatiba – São Paulo *scanobre@yahoo.com.br.

Palavras-Chave: Polianilina, óxido de níquel-manganês litiado, surfactantes, desempenho eletroquímico.


Introdução


Polianilina (PAni) satisfatoriamente tem sido combinada com óxidos inorgânicos produzindo sistemas adequados à intercalação de íons lítio. A reinserção de lítio é facilitada para o óxido LiNi_{0.5}Mn_{0.5}O₂, o qual exibe as capacidades específicas de 120 and 150 mAh g⁻¹ em 2,8-4,3 e 2,8-4,6 V, respectivamente. Além disso, as quantidades de Mn e de Ni presentes neste óxido, o tornam menos tóxico, de baixo custo e com uma alta estabilidade térmica. Portanto, a combinação destes dois tipos de materiais (óxidos mistos e polímeros condutores) resulta em uma classe de compósitos condutores propriedades com procedimentos relativamente simples de síntese. O objetivo deste trabalho foi verificar o desempenho eletroquímico de compósitos PAni/LiMnNiO₄ cujas partículas foram dispersas em três diferentes surfactantes: (3 EO/6 PO - L306, 4 EO/5 PO -L405 e 6 EO/3 PO -L603).

Resultados e Discussão

voltamogramas cíclicos dos compósitos PAni/LiMnNiO₄ e de seus materiais constituintes estão mostrados na Fig. 1. Observa-se para LiMnNiO₄ picos de oxidação e redução a 3,9 e 4,1 V, respectivamente, correspondente aos processos de desintercalação e reintercalação de íons lítio (Fig. 1a). Fig. 1 mostra também um par de picos redox para a polianilina, centrados a 4,2/4,0 V. Um aumento significativo na densidade de corrente foi observado para o compósito PAni/LiMnNiO4 L306 devido provavelmente a uma maior interação entre a polianilina e o óxido, favorecida pelo surfactante com menor concentração de grupos de EO e com baixa cristalinidade. As estruturas densas e cristalinas dos compósitos L405 e L603 dificultam a difusão iônica nos eletrodos, resultando em um decréscimo da eletroatividade. Observa-se na Fig.1b), que apesar de todos os filmes serem caracterizados no mesmo eletrólito, os valores de resistência do eletrólito variaram conforme o agente surfactante utilizado. A hipótese para justificar este comportamento é que durante a síntese do compósito, as moléculas de anilina tornam-se

progressivamente incorporadas aos agregados de do óxido/surfactante. Além disso, como os surfactantes usados na síntese do compósito são constituídos de cadeias de EO/PO, estes provavelmente estejam participando do transporte iônico.

Figura 1. (a) Voltamogramas cíclicos a 1 mV s⁻¹; (b) Diagramas de Bode dos compósitos e seus materiais constituintes em EC/DMC e 1 mol L⁻¹ LiClO₄ a OCP (3,3 V vs. Li).

O melhor desempenho eletroquímico obtido para o compósito PAni/LiMnNiO₄ L306 (Tabela 1) pode ser atribuído à interação efetiva entre a PAni e o LiMnNiO₄–L306 e/ou devido a um aumento da fração de massa do óxido eletroquimicamente ativo exposto ao eletrólito proporcionado pelo surfactante L306.

Tabela 1. Desempenho eletroquímico dos materiais.

Materiais	5 th Capacidade descarga	25 th Capacidade descarga	Capacidade de retenção
	(mAh g ⁼¹)	(mAh g ⁻¹)	(%)
LiMnNiO ₄	122	119	98
PAni	55	53	96
PAni/LiMnNiO ₄ – L306	198	181	91
PAni/LiMnNiO ₄ – L405	134	131	98
PAni/LiMnNiO ₄ – L603	131	130	99

Conclusões

PAni/LiMnNiO₄ L306 apresentou o melhor desempenho eletroquímico com uma capacidade inicial de 198 mAh g⁻¹; após 25 ciclos e com capacidade de retenção de 91%.

Agradecimentos

FAPESP (proc. 05/54578-7 e 07/54467-6) e LNLS.

32ª Reunião Anual da Sociedade Brasileira de Química