Preparação de nanopartículas caroço@casca de TiO₂ e MoO₃ em vidro poroso Vycor pelo método de deposição camada por camada.

Elias de Barros Santos (PG), Italo Odone Mazali^{*} (PQ)

Instituto de Química, CP: 6154, Universidade Estadual de Campinas – UNICAMP, CEP: 13083-970, Campinas, SP, Brasil, *mazali@iqm.unicamp.br.

Palavras Chave: Nanopartículas caroço@casca, Confinamento quântico, Raman.

Introdução

Consideráveis esforcos têm sido empregados para o desenho e a síntese de materiais nanoestruturados com propriedades funcionais.¹ Neste contexto estão as nanopartículas composta por um caroço envolto por uma casca, definidas como nanopartículas caroço@casca (NCC).² Neste trabalho foram sintetizadas NCC de TiO₂@MoO₃ e MoO₃@TiO₂, a partir de vários ciclos de impregnação e posterior decomposição (CIDs), deposição camada por camada, dos precursores di-(própoxido)-di-(2-etilhexanoato) de titânio (IV) e 2etilhexanoato de molibdênio (VI) no interior do vidro poroso Vycor (PVG) (0,8x0,8x0,1) cm³. As NCC foram caracterizadas por Espectroscopias de Refletância Difusa (DRS) e Raman.

Resultados e Discussão

Os dados de espectroscopia Raman indicam que há alterações nas posições das bandas principais do TiO_2 anatásio (E_g em 144 cm⁻¹) e do MoO₃ (B_{1g} em 820 cm⁻¹), para maiores números de onda, em função da diminuição do tamanho das partículas, evidenciando a presença de efeito de confinamento quântico de tamanho. Também é observado a ausência da banda A_g (996 cm⁻¹), atribuída ao grupo terminal Mo=O, quando o MoO₃ é recoberto com TiO₂, evidenciando a formação das NCC a partir deste grupo. Na Figura 1 são apresentadas imagens das peças de PVG contendo as nanopartículas caroço@casca.

Figura 1. Fotos das NCC. Os números indicam a quantidade de CIDs.

As NCC, MoO₃@TiO₂ e TiO₂@MoO₃, apresentam cores diferentes do caroço indicando que há alterações no mecanismo de transferência dos portadores de carga (elétron e buraco) ao serem excitados. Isto ocorre devido ao alinhamento das bandas de energia quando os óxidos são combinados para formar as NCC. Este fenômeno é

diretamente influenciado pela espessura da casca, o que pode ser observado com o aumento de CIDs. Os dados de DRS são apresentados na Tabela 1.

Tabela 1. Energia da banda proibida $(\ensuremath{\textit{gap}})$ em função do número de CIDs

CID	<i>gap /</i> eV	CID	<i>gap /</i> eV
ЗМо	3,66	3Ti	3,90
5Mo	3,51	5Ti	3,78
7Mo	3,44	7Ti	3,68
5Mo@3Ti	3,74	5Ti@3Mo	3,74
5Mo@5Ti	3,70	5Ti@5Mo	3,69
5Mo@7TI	3,65	5Ti@7Mo	3,64

A partir da análise dos dados da Tabela 1 é possível observar que há deslocamento da banda proibida em função do tamanho das partículas, o que caracteriza a presença de efeito de confinamento quântico de tamanho. Além disso, todas as partículas dos óxidos apresentam energias da banda proibida maiores do que os respectivos sólidos estendidos: TiO₂ anatásio (3,2 eV) e MoO₃ (3,0 eV). Nos sistemas caroço@casca são determinados valores intermediários de energias entre os valores individuais dos óxidos, o que está coerente com as mudancas de cores com a variação do tamanho das partículas. Isto é uma forte evidência do acoplamento dos dois óxidos, formando as NCC, e alinhamento das bandas de energia, favorecendo a ocorrência de diferentes mecanismos dos portadores de carga.

Conclusões

A partir das análises dos dados é possível observar que ocorreu a formação das NCC no interior dos poros do Vycor, exibindo forte indício da presença de confinamento quântico devido ao ambiente restrito para o crescimento das partículas.

Agradecimentos

A FAPESP pela bolsa de doutorado, ao Instituto de química da Unicamp.

32^ª Reunião Anual da Sociedade Brasileira de Química

¹ Elder, S. H. et al. J. Am. Chem. Soc. **2000**, 122, 5138.

² Mazali, I. O.; Souza Filho, A. G.; Viana, B .C.; Mendes Filho, J.; Alves, O. L. *J. Nanopart.Res.***2006**, 8, 141.