Desenvolvimento de método para determinação direta de mercúrio em mel empregando a espectrometria de absorção atômica com geração de hidretos.

Heulla Pereira Vieira¹ (PG), Clésia Cristina Nascentes¹ (PQ), Cláudia Carvalhinho Windmoller¹ (PQ)

¹Departamento de Química, ICEX, UFMG, Av. Antônio Carlos, 6627, CEP: 31270-901, Belo Horizonte – MG. heulla@yahoo.com.br

Palavras Chave: Mercúrio, Geração de Hidretos, análise direta, mel.

Introdução

O mel é um alimento rico em diversos nutrientes, entretanto, é uma matriz suscetível à acumulação de metais. O conhecimento do conteúdo de metais tóxicos no mel é de interesse não somente para o controle de qualidade, mas também como um indicador ambiental¹. Estima-se que as abelhas podem percorrer uma área de mais de 7 km² em torno da colméia, interagindo com o ar, a água e o solo².

A produção mineira de mel tem ficado na casa das quatro mil toneladas anuais. O Estado possui cerca de 4.500 apicultores e o mercado americano absorve quase 90% do mel exportado pelo Brasil, e a cada dia o mercado se torna mais exigente com relação à segurança desse alimento³.

Neste trabalho foi desenvolvido um método para quantificar mercúrio em amostras de mel sem decomposição da amostra e utilizando geração de hidretos e espectrometria de absorção atômica. O método proposto foi comparado com um procedimento de decomposição, e ambos foram utilizados para quantificar mercúrio em amostras de mel provenientes de Santa Bárbara e João Monlevade, Minas Gerais.

Resultados e Discussão

Para otimizar o método para determinação de mercúrio em mel utilizando a técnica de geração de hidretos sem decomposição prévia da amostra empregou-se inicialmente um planejamento fatorial fracionário 2⁴⁻¹. Nesse planejamento foram avaliados os fatores: agente redutor, concentração de ácido, massa de amostra e diluente, todos em dois níveis, conforme Tabela 01.

Tabela 01. Fatores e níveis estudados.

Fatores	Inferior (-)	Superior (+)
Redutor	NaBH ₄ 0,2 %	SnCl ₂ 1,1 %
	(m/v)	(m/v)
HCI	3 % (v/v)	10 % (v/v)
Massa de amostra	1,0 % (m/v)	5,0 % (m/v)
Diluente	H ₂ O	HCI 1,0 %
		(v/v)

Verificou-se que a utilização de NaBH₄ e HCl 3 % (v/v) conduziram a melhores respostas instrumentais. O aumento na massa e a utilização de HCl como diluente apresentaram efeito significativo e negativo na resposta instrumental.

Na etapa seguinte foi feito o planejamento composto central (CCD) para otimizar a concentração de NaBH₄, HCl e massa de amostra.

O ensaio 15 foi realizado em quintuplicada. Os resultados obtidos são apresentados na Tabela 02.

Tabela 02. Planejamento composto central.

	NaBH ₄ %	HCI	Massa	Recuperação
Ensaio	(m/v)	%(v/v)	% (m/v)	%
1	0,2000	2,000	2,000	69,57
2	0,6000	2,000	2,000	74,15
3	0,2000	4,000	2,000	83,15
4	0,6000	4,000	2,000	81,05
5	0,2000	2,000	4,000	62,13
6	0,6000	2,000	4,000	75,19
7	0,2000	4,000	4,000	86,17
8	0,6000	4,000	4,000	70,85
9	0,0636	3,000	3,000	86,35
10	0,7364	3,000	3,000	83,04
11	0,4000	1,318	3,000	91,45
12	0,4000	4,682	3,000	79,30
13	0,4000	3,000	1,318	105,77
14	0,4000	3,000	4,682	83,96
15	0,4000	3,000	3,000	80,93

As condições utilizadas no ensaio 13 conduziram a uma melhor recuperação em relação aos demais, sendo possível determinar mercúrio com um limite de quantificação (LQ) de 0,15 mg/kg.

Amostras de mel de João Monlevade e Santa Bárbara foram analisadas utilizando o método proposto e também por decomposição em um sistema blocodigestor/condensador. Posteriormente essas amostras foram quantificadas utilizando as mesmas condições do método desenvolvido e ambas apresentaram concentração de mercúrio abaixo do limite de quantificação do método.

Conclusões

O método de análise direta mostrou-se viável para a quantificação de mercúrio em mel, sendo que novos estudos serão realizados com o objetivo de aprimorar o LQ.

Agradecimentos

CNPq, FAPEMIG (PRONEX ECT 479/07)

Referências Bibliográficas

¹FREE, J. B. *et al.* Environment International, 9(1): 9-12, 1983.

²BULDINI, P. L. et al. Food Chemistry, 73: 487-495, 2001.

³http://www.congressoapicultura2008.com.br. Acessado em 6 de junho de 2008.