Correlação entre a probabilidade de formação do positrônio e momento dipolar em dihidroxibenzenos.

Fernando Castro de Oliveira^{1,2}(PG)*, Fernando Fulgêncio Henriques¹(PG), José Caetano Machado¹(PQ), Dario Windmöller¹(PQ).

fernando.c.oliveira@gmail.com

Palavras Chave: Positrônio, Dihidroxibenzeno, Momento Dipolar

Introdução

Um melhor entendimento do mecanismo envolvido na formação de Positrônio – Ps – (estado ligado entre um pósitron, e⁺, e um elétron, e⁻) em sistemas moleculares é um problema em aberto, que tem recebido considerável atenção de físicos e químicos, teóricos e experimentais. Como a formação do positrônio em compostos moleculares depende de propriedades químicas e físicas do sistema, este problema envolve diferentes campos do conhecimento, incluindo química e ciências dos materiais [1].

Utilizando a espectroscopia de vida média de pósitron (EVMP), foram estudados os isômeros do dihidroxibenzeno. O objetivo central do trabalho foi o de verificar sugestão proposta por Schrader, que através de estudos teóricos, propõe a existência de uma forte correlação entre a afinidade positrônica e o momento dipolar do sistema [2].

Tendo como objetivo central a procura de uma possível correlação entre parâmetros de aniquilação de pósitrons, mais especificamente a probabilidade de formação de Ps (que pode ser correlacionada com a intensidade relativa de formação de positrônio em um dado sistema, o parâmetro I_3 %, relacionado com o o-Ps), foram estudados os isômeros dihidroxibenzeno.

Resultados e Discussão

Os isômeros catecol, resorcinol e hidroquinona (Aldrich) foram purificados por recristalização e caracterizados por espectroscopia de absorção molecular na região do infravermelho e análise elementar. As medidas de aniquilação de pósitrons foram realizadas utilizando-se um circuito de coincidência nuclear rápido-rápido, com resolução temporal de 260 ps. As amostras foram medidas na forma de pó, utilizando-se fonte de Na-22. Os resultados experimentais obtidos por EVMP e valores de Momento Dipolar obtidos da literatura dos isômeros estão listados na Tabela 1.

Tabela 1 – Resultados de EVMP e momento dipolar

	τ_3 / ns	I ₃ / %	MD / D
Catecol	1,09	09	2,62
Resorcinol	1,19	15	2,07
Hidroquinona	1,31	20	1,40

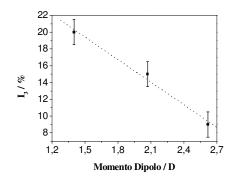


Figura 1 - Correlação entre I_3 e Momento Dipolar para Catecol, Resorcinol e Hidroquinona.

A análise da Figura 1 mostra uma perfeita correlação linear entre o parâmetro I_3 com o Momento Dipolar dos isômeros dihidroxibenzenos, que pode ser descrita pela seguinte equação:

$$I_3 = I_3^{MD=0} - b \cdot MD \qquad \text{(eq. 1)}$$

onde $I_3 \rightarrow$ parâmetro associado à probabilidade de formação de Ps; $I_3^{MD=0} \rightarrow$ constante associado ao I_3 no limite do Momento Dipolar igual a zero; $b \rightarrow$ uma constante e $MD \rightarrow$ Momento Dipolar.

A eq. 1 foi obtida através de regressão linear com um coeficiente de correlação igual a 0,99405.

Outros sistemas semelhantes aos dihidroxibenzenos, substituindo o grupo -OH por grupos $-NH_2$, -CN e $-NO_2$, serão estudados por nosso grupo.

Conclusões

As análises preliminares de EVMP revelam uma forte dependência entre o parâmetro I_3 e o momento dipolar dos isômeros dihidroxibenzeno, que pode ser descrita pela Eq. 1, como sugerido por Schrader [2].

Agradecimentos

CNPq, FAPEMIG

¹Laboratório de Espectroscopia de Aniquilação de Pósitrons e Química de Materiais, DQ, ICEx – UFMG – BH, MG.

²Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG – Campus VII, Timóteo – MG.

^{[1] –} Faustino, W. M., Sá, G. F., Malta, O.L., Magalhães W. F., Machado, J. C., Chemical Physics Letters, 452 (2008) 249.

^{[2] –} Jean, Y. C., Mallon, P. E., Schrader, D. M., Principles and Applications os Positron & Positronium Chemistry, World Scientific, New Jersey, London, 2003.